The lower the frequncy the longer the wavelength the longer the wavelength whoch would probably give you more energy.
if im incorrect im truly sorry
- Answer: <em><u>The compounds containing CFCs (chlorofluorocarbons) are mainly responsible for ozone layer depletion as these compounds react with ozone in the presence of ultraviolet rays to form oxygen molecule and thus, destroying ozone.</u></em>
Explanation: <em><u>Human activities cause the emission of halogen source gases that contain chlorine and bromine atoms. These emissions into the atmosphere ultimately lead to stratospheric ozone depletion. The source gases that contain only carbon, chlorine, and fluorine are called chlo- rofluorocarbons usually abbreviated as CFCs.</u></em>
Answer:
[Ne] 3s2 3p2
Explanation:
Neon (Ne) is the noble gas right before silicon (Si).
Then right after neon is the 3s subshell. It has two electrons and is full.
After 3s comes the 3p subshell, and silicon only has two electrons in the 3p subshell (you can just count the electrons in each subshell on your periodic table).
Answer:
-177.9 kJ.
Explanation:
Use Hess's law. Ca(s) + CO2(g) + 1/2O2(g) → CaCO3(s) ΔH = -812.8 kJ 2Ca(s) + O2(g) → 2CaO(s) ΔH = -1269.8 kJ We need to get rid of the Ca and O2 in the equations, so we need to change the equations so that they're on both sides so they "cancel" out, similar to a system of equations. I changed the second equation. Ca(s) + CO2(g) + 1/2O2(g) → CaCO3(s) ΔH = -812.8 kJ 2CaO(s) → 2Ca(s) + O2(g) ΔH = +1269.8 kJ The sign changes in the second equation above since the reaction changed direction. Next, we need to multiply the first equation by two in order to get the coefficients of the Ca and O2 to match those in the second equation. We also multiply the enthalpy of the first equation by 2. 2Ca(s) + 2CO2(g) + O2(g) → 2CaCO3(s) ΔH = -1625.6 kJ 2CaO(s) → 2Ca(s) + O2(g) ΔH = +1269.8 kJ Now we add the two equations. The O2 and 2Ca "cancel" since they're on opposite sides of the arrow. Think of it more mathematically. We add the two enthalpies and get 2CaO(s) + 2CO2(g) → 2CaCO3(s) and ΔH = -355.8 kJ. Finally divide by two to get the given equation: CaO(s) + CO2(g) → CaCO3(s) and ΔH = -177.9 kJ.