Answer: About
Step-by-step explanation:
The missing figure is attached.
Notice in the first picture that Alberta has a complex shape.
You can calculate the area of a complex shape by decomposing it into polygons whose areas can be calculated easily.
Observe the second picture. Notice that it can be descompose into two polygons: A trapezoid and a rectangle.
The area of the trapezoid can be calcualted with the formula:

Where "h" is the height, "B" is the long base and "b" is short base.
And the area of the rectangle can be found with the formula:

Wkere "l" is the lenght and "w" is the width.
Then, the apprximate area of Alberta is:

Substituting vallues, you get:

Therefore, the area of of Alberta is about
.
The answer is x=1 y=-1 and z=1. If you plug in the variables you get
4-3+5 and that equals 6. So that’s the answer
Answer:
B.) as x --> -∞, f(x) --> ∞ and x --> ∞, f(x) --> ∞
Step-by-step explanation:
F(x) is another way of representing "y". That being said, the question is asking you the behavior of the graph in terms of the y-axis. On both sides of the function, there is an arrow pointing upwards, towards infinite, positive y-values. Therefore, as "x" approaches -∞ and ∞, f(x) is approaching ∞ (positive infinity).
Answer:
x=−5/2,6
Step-by-step explanation: