Answer:
Temperature is a measure of the average energy of molecular motion in a substance. In everyday usage, temperature indicates a measure of how hot or cold an object is. Temperature is an important parameter in chemistry. When a substance changes from solid to liquid, it is because there was in increase in the temperature of the material. Chemical reactions usually proceed faster if the temperature is increased.
Absolute zero is the lowest temperature in Kelvin which all motion stops. Absolute zero is called 0 Kelvin (0 K), and it is equivalent to –273.15°C or –459.67°F.
Answer:
B. The object's volume
Explanation:
When an object is immersed in a fluid, it experiences an upward force which is called buoyant force. The magnitude of the buoyant force is given by:

where
is the density of the fluid in which the object is immersed
is the volume of the fluid displaced by the object
is the acceleration due to gravity
When the object is totally immersed in the fluid,
corresponds to the volume of the object; when the object is only partially immersed,
corresponds only to the volume of the part of the object immersed.
From the formula, we see that the greatest buoyant force is experienced by the object when it is fully immersed. Moreover, we see that the buoyant force depends only on one property of the object: its volume. Therefore, the correct choice is
B. The object's volume
It increases. As it moves it <span>increases while the movement is in process.
</span>
Answer:
The best option is for the following option m = 15 [g] and V = 5 [cm³]
Explanation:
We have that the density of a body is defined as the ratio of mass to volume.

where:
Ro = density = 3 [g/cm³]
Now we must determine the densities with each of the given values.
<u>For m = 7 [g] and V = 2.3 [cm³]</u>
![Ro=7/2.3\\Ro=3.04 [g/cm^{3} ]](https://tex.z-dn.net/?f=Ro%3D7%2F2.3%5C%5CRo%3D3.04%20%5Bg%2Fcm%5E%7B3%7D%20%5D)
<u>For m = 10 [g] and V = 7 [cm³]</u>
<u />
<u />
<u>For m = 15 [g] and V = 5 [cm³]</u>
<u />
<u />
<u>For m = 21 [g] and V = 8 [cm³]</u>
<u />
<u />