Answer:
Explanation:
El impulso aplicado a la pelota produce una variación en su momento lineal.
J = m (V -Vo)
Conviene elegir positivo el sentido de la velocidad final.
J = 0,100 kg [40 - (- 20)] m/s = 6 kg m/s
Saludos Herminio
Answer:
The horizontal velocity is 
Explanation:
From the question we are told that
The mass of the pumpkin is 
The distance of the the car from the building's base is 
The height of the roof is 
The height is mathematically represented as

Where g is the acceleration due to gravity which has a value of 
substituting values

making the time taken the subject of the formula


The speed at which the pumpkin move horizontally can be represented mathematically as

substituting values


Answer:
5773.50269 Hz
23 A
Explanation:
= Inductance = 6 mH
= Capacitance = 5 μF
= Resistance = 3 Ω
= Maximum emf = 69 V
Resonant angular frequency is given by

The resonant angular frequency is 5773.50269 Hz
Current is given by

The current amplitude at the resonant angular frequency is 23 A
Answer:0.061
Explanation:
Given

Temperature of soup 
heat capacity of soup 
Here Temperature of soup is constantly decreasing
suppose T is the temperature of soup at any instant
efficiency is given by



integrating From
to 


![W=c_v\left [ T-T_C\ln T\right ]_{T_H}^{T_C}](https://tex.z-dn.net/?f=W%3Dc_v%5Cleft%20%5B%20T-T_C%5Cln%20T%5Cright%20%5D_%7BT_H%7D%5E%7BT_C%7D)
![W=c_v\left [ \left ( T_C-T_H\right )-T_C\left ( \ln \frac{T_C}{T_H}\right )\right ]](https://tex.z-dn.net/?f=W%3Dc_v%5Cleft%20%5B%20%5Cleft%20%28%20T_C-T_H%5Cright%20%29-T_C%5Cleft%20%28%20%5Cln%20%5Cfrac%7BT_C%7D%7BT_H%7D%5Cright%20%29%5Cright%20%5D)
Now heat lost by soup is given by

Fraction of the total heat that is lost by the soup can be turned is given by

![=\frac{c_v\left [ \left ( T_C-T_H\right )-T_C\left ( \ln \frac{T_C}{T_H}\right )\right ]}{c_v(T_C-T_H)}](https://tex.z-dn.net/?f=%3D%5Cfrac%7Bc_v%5Cleft%20%5B%20%5Cleft%20%28%20T_C-T_H%5Cright%20%29-T_C%5Cleft%20%28%20%5Cln%20%5Cfrac%7BT_C%7D%7BT_H%7D%5Cright%20%29%5Cright%20%5D%7D%7Bc_v%28T_C-T_H%29%7D)




D = 1/f, where D is the power in diopters and f is the focal length in meters.
D=1/20
<u>D=0.05</u>