Dependent variable is your answer.
Answer:
5x10^-3
Explanation:
Hooke's Law states that the force needed to compress or extend a spring is directly proportional to the distance you stretch it.
Hooke's Law can be represented as
<h3> F = kx, </h3>
<em>where F is the force </em>
<em> k is the spring constant</em>
<em> x is the extension of the material </em>
<em />
Plug values in the equation
Step 1 find the original extension
0.045 = (400)x
x = 1.125x 10^-4 m d
Step 2 find the new extension
0.045+2 = 400(x)
2.045 = 400x
x = 5.1125x10^-3
Step 3 subtract the new extension with original
Total extension of the spring = 5.1125x10^-3 - 1.125x 10^-4 m = 5x10^-3
Correct order, from lowest potential energy to highest potential energy:
E - C - D - B - A
Explanation:
The gravitational potential energy of the car is given by:

where
m is the car's mass
g is the gravitational acceleration
h is the height of the car relative to the ground
In the formula, we see that m and g are constant, so the potential energy of the car depends only on its height above the ground, h. The higher the car from the ground, the larger its potential energy. Therefore, the position with least potential energy will be E, since the height is the minimum. Then, C will have more potential energy, because the car is at higher position, and so on: the position with greatest potential energy is A, because the height of the car is maximum.
D because u r using your energy to do all the things