<span>Torque = force * distance from axis of rotation. Multiply.
If it's not perpendicular, you multiply that with the sine of the angle between the force and the perpendicular direction.
T= 0.470*57*Sin 90 = 26.79 N</span>
Answer:
Thermal conduction is the transfer of internal energy by microscopic collisions of particles and movement of electrons within a body. The colliding particles, which include molecules, atoms and electrons, transfer disorganized microscopic kinetic and potential energy, jointly known as internal energy.
I believe it's conduction
K.E. increases by 9 times
Explanation:
The kinetic energy of a car is given by:

where
m is the mass of the car
v is its speed
From this definition, we see that the kinetic energy depends on the square of the velocity. Assuming that both cars have same mass, m, the kinetic energy of the first car is:

while the kinetic energy of the second car is

if we calculate the ratio, we get

Answer:
1.25 kgm²/sec
Explanation:
Disk inertia, Jd =
Jd = 1/2 * 3.7 * 0.40² = 0.2960 kgm²
Disk angular speed =
ωd = 0.1047 * 30 = 3.1416 rad/sec
Hollow cylinder inertia =
Jc = 3.7 * 0.40² = 0.592 kgm²
Initial Kinetic Energy of the disk
Ekd = 1/2 * Jd * ωd²
Ekd = 0.148 * 9.87
Ekd = 1.4607 joule
Ekd = (Jc + 1/2*Jd) * ω²
Final angular speed =
ω² = Ekd/(Jc+1/2*Jd)
ω² = 1.4607/(0.592+0.148)
ω² = 1.4607/0.74
ω² = 1.974
ω = √1.974
ω = 1.405 rad/sec
Final angular momentum =
L = (Jd+Jc) * ω
L = 0.888 * 1.405
L = 1.25 kgm²/sec