Answer:
V = 20 m/s
Explanation:
Given the following data;
Mass = 80kg
Kinetic energy = 16,000 joules
To find the velocity;
Kinetic energy can be defined as an energy possessed by an object or body due to its motion.
Mathematically, kinetic energy is given by the formula;

Where;
K.E represents kinetic energy measured in Joules.
M represents mass measured in kilograms.
V represents velocity measured in metres per seconds square.
Substituting into the formula, we have;
16000 = ½*80*V²
16000 = 40V²
V² = 16000/40
V² = 400
Taking the square root of both sides, we have;
V = 20 m/s
Kinetic Energy. Energy is transferred from one object to another when a reaction takes place. Energy comes in many forms and can be transferred from one object to another as heat, light, or motion, to name a few. For the blue ball to move to the position of the green ball, energy must be given to the blue ball.
Answer:
A 10 N force pointing up
Explanation:
If the net acceleration of the object is horizontal pointing to the right, that means that all vertical forces must have canceled out, and the only ones "unbalanced" are the horizontal ones (10 N to the right minus 5 N to the left giving a net force of 5 N to the right).
Since they mentioned only one vertical force pointing down (10 N), there must be another one of same magnitude but pointing in opposite direction (up).
Then there must also be a 10 N force pointing up acting on the object.
Answer: The 6 kg rock sitting on a 3.2 m cliff.
Explanation:
The potential energy of an object of mass M that is at a height H above the ground us:
U = M*H*g
where g is the gravitational acceleration:
g = 9.8m/s^2
Then:
"An 8 kg rock sitting on a 2.2 m cliff"
M = 8kg
H = 2.2m
U = 8kg*2.2m*9.8 m/s^2 = 172.48 J
"a 6 kg rock sitting on a 3.2 m cliff"
M = 6kg
H = 3.2m
U = 6kg*3.2m*9.8m/s^2 = 188.16 J
You can see that the 6kg rock on a 3.2m cliff has a larger potential energy.