Answer: 30.34m/s
Explanation:
The sum of forces in the y direction 0 = N cos 28 - μN sin28 - mg
Sum of forces in the x direction
mv²/r = N sin 28 + μN cos 28
mv²/r = N(sin 28 + μcos 28)
Thus,
mv²/r = mg [(sin 28 + μ cos 28)/(cos 28 - μ sin 28)]
v²/r = g [(sin 28 + μ cos 28)/(cos 28 - μ sin 28)]
v²/36 = 9.8 [(0.4695 + 0.87*0.8829) - (0.8829 - 0.87*0.4695)]
v²/36 = 9.8 [(0.4695 + 0.7681) / (0.8829 - 0.4085)]
v²/36 = 9.8 (1.2376/0.4744)
v²/36 = 9.8 * 2.6088
v²/36 = 25.57
v² = 920.52
v = 30.34m/s
Answer:
126 mWb
Explanation:
Given that:
length (L) = 50 cm = 0.5 m, radius (r) = 5 cm = 0.05 m, current (I) = 10 A, number of turns (N) = 800 turns.
We assume that the magnetic field in the solenoid is constant.
The magnetic flux is given as:

You've got some UHF radio waves at the long end of that range. But most of the range consists of <em>microwaves</em>.
For example: In the US, the "microwave oven" kitchen appliance cooks with radiation at a wavelength of about 12.2 cm .
Answer:
W = 12.568rads
V = 1.8852m/s
Explanation:
Data:
r = 15cm = 0.15m
t = 10s
Revolutions = 20
Frequency (F) = number revolutions/ time take complete it
F = 20 / 10 = 2Hz
Angular velocity (w) = 2 * 3.142 * F
Note: 3.142 = value of pi
W = 2*3.142*2 = 12.568 rads
Linear velocity (v) = w*r
V = 12.568*0.15 = 1.8852m/s
Answer:
C) Both 1 and 2
Explanation:
The scan tool may include a bi-directional control that allows the technician to control the output of the alternator for testing purposes.
The Diagnostic Trouble Codes (DTCs), are used by automobile manufacturers to diagnose problems related to the vehicle.
The scan tool can also be used to monitor the output voltage of the vehicle to verify if the correct amount of voltage is supplied by the alternator.
Both Technicians A and B are correct because the steps they both take are necessary for the diagnosis of the vehicle.