Answer:
53.64 m/s
Explanation:
Applying,
a = (v-u)/t............. Equation 1
Where a = acceleration of the car, v = final velocity of the car, u = initial velocity of the car, t = time.
make u the subject of the equation
u = v-at............. Equation 2
From the question,
Given: a = -12 mph/s = -5.364 m/s², t = 10 seconds, v = 0 m/s (comes to stop)
Substitute these values into equation 2
u = 0-(-5.364×10)
u = 0+53.64
u = 53.64 m/s
Answer:
a) The magnitude of the force is 968 N
b) For a constant speed of 30 m/s, the magnitude of the force is 1,037 N
Explanation:
<em>NOTE: The question b) will be changed in other to give a meaningful answer, because it is the same speed as the original (the gallons would be 1.9, as in the original).</em>
Information given:
d = 106 km = 106,000 m
v1 = 28 m/s
G = 1.9 gal
η = 0.3
Eff = 1.2 x 10^8 J/gal
a) We can express the energy used as the work done. This work has the following expression:

Then, we can derive the magnitude of the force as:

b) We will calculate the force for a speed of 30 m/s.
If the force is proportional to the speed, we have:

Answer:
2.2 µm
Explanation:
For constructive interference, the expression is:
Where, m = 1, 2, .....
d is the distance between the slits.
Given wavelength = 597 nm
Angle,
= 15.8°
First bright fringe means , m = 1
So,
Also,
1 nm = 10⁻⁹ m
1 µm = 10⁻⁶ m
So,
1 nm = 10⁻³ nm
Thus,
<u>Distance between slits ≅ 2.2 µm</u>
Answer:

Explanation:
Given:
volume of air in the room, 
temperature of the room, 
<u>Saturation water vapor pressure at any temperature T K is given as:</u>
<u />
<u />
putting T=298 K we have

<u>The no. of moles of water molecules that this volume of air can hold is:</u>
Using Ideal gas law,



is the maximum capacity of the given volume of air to hold the moisture.
Currently we have 80% of n, so the mass of 20% of n:

where;
M= molecular mass of water

is the mass of water that can vaporize further.