Gravitational potential energy=mass*gravitational acceleration*heightKinetic energy = 0.5*mass*velocity²Thus:K.E0.5*1*x²=12.5x²=12.5/(0.5*1)x=√12.5/(0.5*1)x=5
GPEmass*gravitational acceleration*height1*9.81*h=98h=98/(9.81*1)h= 9.98 J approximately, rounded 10meters
Answer:
(a) ΔU=747J
(b) γ=1.3
Explanation:
For (a) change in internal energy
According to first law of thermodynamics the change in internal energy is given as
ΔU=Q-W
Substitute the given values
ΔU=970J-223J
ΔU=747J
For(b) γ for the gas.
We can calculate γ by ratio of heat capacities of the gas
γ=Cp/Cv
Where Cp is the molar heat capacity at constant pressure
Cv is the molar heat capacity at constant volume
To calculate γ we first need to find Cp and Cv
So
For Cp
As we know
Q=nCpΔT
Cp=(Q/nΔT)

From relation of Cv and Cp we know that
Cp=Cv+R
Where R is gas constant equals to 8.314J/mol.K
So

So
γ=Cp/Cv
γ=[(37J/mol.K) / (28.687J/mol.K)]
γ=1.3
Answer:
Fd
Explanation:
Work is force times distance. If you push on an object really hard but it does not budge, you have still performed no work on it, because anything times zero is still zero.
Answer:
a) The electric field at that point is
newtons per coulomb.
b) The electric force is
newtons.
Explanation:
a) Let suppose that electric field is uniform, then the following electric field can be applied:
(1)
Where:
- Electric field, measured in newtons per coulomb.
- Electric force, measured in newtons.
- Electric charge, measured in coulombs.
If we know that
and
, then the electric field at that point is:


The electric field at that point is
newtons per coulomb.
b) If we know that
and
, then the electric force is:



The electric force is
newtons.
Answer: momentum has the same direction as that of velocity but when 2 bodies with the same linear momentum & different velocities it has different masses because a vector quantity is represented by a cross product of mass and velocity of object .