Answer:
2.96 cm
Explanation:
By Hook's law
Force(F) = Spring constant(k) × Extension(d)
F = k × d
Force is the weight of the object, F = W = mg
So we get, mg = kd ⇒ m ∝ d
2.5 ∝ 1.68 --------------(1)
4.4 ∝ d' --------------(2)
From (1) & (2), 4.4/2.5 = d'/1.68
d' = 2.96 cm ⇒ the required extension.
Answer:
Net force on the block is 32 N.
Acceleration of the object is 6.4 m/s².
Explanation:
Let the acceleration of the object be
m/s².
Given:
Mass of the block is, 
Force of pull is, 
Frictional force on the block is, 
The free body diagram of the object is shown below.
From the figure, the net force in the forward direction is given as:

Now, from Newton's second law of motion, net force is equal to the product of mass and acceleration. So,

Therefore, the acceleration of the object in the forward direction is 6.4 m/s².
Answer:
Yes, but only if it's sunny.
Explanation:
As you know, solar panels generate energy through the sun's rays of light (better known as sunlight). Therefore, as long as the sun is shining high in the sky, the car will generate electricity and be able to function. If this vehicle was only powered by solar panels, it would not function during the night, in cloudy areas, and/or in dark places (such as parking garages or home garages).
Hope this helps!
Answer:
a = 3 m/s^2
Explanation:
Vi = 10 m/s
Vf = 40 m/s
t = 10 s
Plug those values into the following equation:
Vf = Vi + at
40 = 10 + 10a
---> a = 3 m/s^2