When solar radiation reaches the Earth it quickly dissipates as most of the radiation and UV rays are blocked by ozone layer, but more radiation and UV rays are able to get through because of global warming.
Answer:
1.) U = 39.2 m/s
2.) t = 4s
Explanation: Given that the
height H = 78.4m
The projectile is fired vertically upwards under the acceleration due to gravity g = 9.8 m/s^2
Let's assume that the maximum height = 78.4m. And at maximum height, final velocity V = 0
Velocity of projections can be achieved by using the formula
V^2 = U^2 - 2gH
g will be negative as the object is moving against the gravity
0 = U^2 - 2 × 9.8 × 78.4
U^2 = 1536.64
U = sqrt( 1536.64 )
U = 39.2 m/s
The time it takes to reach its highest point can be calculated by using the formula;
V = U - gt
Where V = 0
Substitute U and t into the formula
0 = 39.2 - 9.8 × t
9.8t = 39.2
t = 39.2/9.8
t = 4 seconds.
I’m pretty sure it is an object with a net force of zero. All forces are balanced and EQUAL
Answer:
A charge of -5.02 nC is uniformly distributed on a thin square sheet of nonconducting material of edge length 21.8 cm. "What is the surface charge density of the sheet"?
Explanation:
Surface charge density is a measure of how much electric charge is accumulated over a surface. It can be calculated as the charge per unit area.
We will convert all parameters in SI units.
Charge = Q = -5.02nC
Q = -5.02×
C
As it is clear from question that Sheet is a square (All sides will be of equal length)
Area = A = (21.8×
m) (21.8×
m) = 4.75×
m²
A = 4.75×
m²
Surface charge density = Q/A
Surface charge density = (-5.02×
C)/(4.75×
m²)
Surface charge density = -1.057×
C
We commonly know refer to something 'digital' has to something electronic that can be visibly seen such as a watch, clock, camera, screen, etc. It really refers to stored energy or electricity that's not natural. But the word 'digital' in science refers to the depiction of data<span> or </span>information<span> in </span>figures<span> (such as in a </span>table<span>) in contrast to as a </span>chart<span>, </span>graph<span>, </span>drawing<span>, or other pictorial </span>form.<span>
</span>