The ball is using an reaction and opposite reaction, so when you dribble a basketball you push the ball with downward force and the ground pushes the ball back up thus making the opposite reaction.
Answer:
The magnitude of the electric field at a point equidistant from the lines is 
Explanation:
Given that,
Positive charge = 24.00 μC/m
Distance = 4.10 m
We need to calculate the angle
Using formula of angle



We need to calculate the magnitude of the electric field at a point equidistant from the lines
Using formula of electric field

Put the value into the formula



Hence, The magnitude of the electric field at a point equidistant from the lines is 
Answer:
B.
I think.
Explanation:
Mars doesn't have that much of an atmosphere!
Have a great day!
This is problem of free falling
objects, which can be solved using the formula:
V = sqrt(2gy)
Where v is the velocity upon
impact
G is the acceleration due to
gravity ( 9.81 m/s2)
Y is the height
Since Venessa is 3.5 m
Y = 30 -3.5 = 26.5 m
V = sqrt(2 (9.81 m/s2) ( 26.5
m))
<span>V = 22.8 m/s</span>
The answer is the last option
Explanation: