Objects can only go so fast and that speed is called terminal velocity. so the answer is A
Answer:
The first diffraction maximum fringe will be at approximately 2.7 meters from the central maximum.
Explanation:
We can describe single slit diffraction phenomenon with the equation:
(1)
with θ the angular position of the minimum of order m respect the central maximum, a the slit width and λ the wavelength of the incident light. Because the distances between the first minima and the central maximum (
) are small compared to the distance between the screen and the slit (x), we can approximate
, using this on (1):

solving for y

Note that
is the distance between a minimum and the central maximum but we need the position of a maximum not a minimum, here we can use the fact that a maximum is approximately between two minima, so the first diffraction maximum fringe is between the minima of order 1 and 2, so we should find
,
add them and divide by two:





Answer:
<u>Protons</u> and <u>Neutrons</u> are the two types of nucleons that make up a nucleus. The <u>electrostatic</u> force exists between <u>protons</u> in the nucleus because of their charge. Because it is repulsive, this force tends to make a nucleus <u>unstable</u>. However, the <u>strong nuclear</u> force acts between protons, between neutrons, and between protons and neutrons. This force helps to make a nucleus <u>stable</u>, because it is always attractive.
Explanation:
The nucleus of an atom contains two types of particles, protons and neutrons. Proton has a positive charge, while neutron has no charge. The protons have a repulsive electrostatic force between each other, due to like charges. Due to this repulsive force protons tend to scatter away making the nucleus unstable. In order to overcome this, a force inside the nucleus binds these protons and neutrons together. This attractive force is called strong nuclear force. This force acts on very short ranges.
the above three pictures may help you
go through the attachments
Answer:
v = 17.71 m / s
Explanation:
We can work this exercise with the kinematics equations. In general the body is released so that its initial velocity is zero, the acceleration of the acceleration of gravity
v² = v₀² - 2 g (y -y₀)
v² = 0 - 2g (y -y₀)
when it hits the stone the height is zero and part of the height of the seagull I
v² = 2g y₀
v = Ra (2g i)
let's calculate
v =√ (2 9.8 16)
v = 17.71 m / s