Answer:

Explanation:
Rydberg formula is used to calculate the wavelengths of the spectral lines of many chemical elements. For the hydrogen, is defined as:

Where
is the Rydberg constant for hydrogen and
,
are the lower energy state and the higher energy state, respectively.

Answer:
<em>A farmer with a field of solar panels.</em>
Explanation:
The closest to a locally sources energy would have been
A coal mine located in their county.
But coal as an energy source is not environmentally friendly due to carbon emission, and should not be what the group should advocate for.
<em>The best bet for them is </em>
<em>A farmer with a field of solar panels.</em>
As solar panels are a source of green energy and green energy is what the environmental group should often and always advocate for
Compare the initial mass to the final mass.
Answer:
The pilot is 2214.22 miles from her starting position
Explanation:
Since the pilot is traveling at a constant speed of 635 mph, the total distance traveled can be easily found as follows:

There was a 10 degrees deviation, so the angle between the trajectory of both legs is 170 degrees.
The distance we need to find is that from the start of the first leg to the end of the second leg, those three distances form a triangle and since the side we're interested in is opposite to the 170 degrees angle, we can determine its length by the law of cosines:

The pilot is 2214.22 miles from her starting position
Answer:
1 kg
Explanation:
The container has negligible mass and no heat is loss to the surrounding.
Mass of ice = 0.4kg, initial temperature of ice = -29oC, final temperature of the mixture = 26oC, mass of water (m2) = ?kg, initial temperature of water = 80oC, c ( specific heat capacity of water ) = 4200J/kg.K, Lf = heat of fusion of water = 3.36 × 10^5 J/kg
Using the formula:
Quantity of heat gain by ice = Quantity of heat loss by water
Quantity of heat gain by ice = mass of ice × heat of fusion of ice + mass of water × specific heat capacity of water = (0.4 × 3.36 × 10^ 5) + (0.4 × 4200 × (26- (-29) = 13.44 × 10^4 + 9.24 × 10^ 4 = 22.68 × 10^4 J
Quantity of heat loss by water = m2cΔT
Quantity of heat loss by water = m2 ×4200× (80 - 26) = m(226800)
since heat gain = heat loss
22.68 × 10^4 = 226800 m2
divide both side by 226800
226800 / 226800 = m2
m2 = 1 kg