Answer:
Rutherford and atomic model are correctly matched.
Answer:
The magnitude of the electric force on a protein with this charge is 
Explanation:
Given that,
Electric field = 1500 N/C
Charge = 30 e
We need to calculate the magnitude of the electric force on a protein with this charge
Using formula of electrostatic force

Where, F = force
E = electric field
q = charge
Put the value into the formula


Hence, The magnitude of the electric force on a protein with this charge is 
Answer:
Newton believed that mass tells gravity how much force to exert. Einstein believed that mass tells space-time how to curve.
Explanation:
Isaac Newton believed that bodies on earth had a force of gravity pulling them down as a result of their masses.
Albert Einstein believed that the bodies were not pulled down but were moving around in a circular sphere/manner.
This confirms Newton believing that mass tells gravity how much force to exert and Einstein believing that mass tells space-time how to curve.
Answer: 5billion years
Explanation: The sun produces energy through radioactive fusion reaction.
Nebula theory states that the gaseous particles of the Earth collapsed as a result of its own gravity which continuously lead to fusion reaction for the production of nuclear energy.
The Core of the Sun is that area up to 25% from the radius of the sun,here the pressure here range up to 250million atmosphere containing mainly hydrogen which gets converted in Helium molecule. The core is the center for energy production accounting for more than 98%, nuclear energy is transmitted at about 4.3million metric tons per second.
Answer:
mass consumed by 235U each day = 2 kg
Explanation:
electrical power produced = 1 GW = 1 × 10⁹ × (6.24151 × 10¹⁸ ) eV
= 6.24151× 10²¹ MeV/s
thermal energy = 0.420 * 250 = 105 MeV

= 5.94 × 10¹⁹ fission/second
=5.94 × 10¹⁹× 24 × 60 ×60)
= 5.13 × 10²⁴ fission/day
mu = 235.04393 × 1.660× 10 ⁻²⁷ = 390.1729× 10⁻²⁷ Kg
M = mu ×5.13 × 10²⁴
= 390.1729× 10⁻²⁷ ×5.13 × 10²⁴
M = 2 kg(approx.)
mass consumed by 235U each day = 2 kg