Answer:
The answer is below
Step-by-step explanation:
The linear model represents the height, f(x), of a water balloon thrown off the roof of a building over time, x, measured in seconds: A linear model with ordered pairs at 0, 60 and 2, 75 and 4, 75 and 6, 40 and 8, 20 and 10, 0 and 12, 0 and 14, 0. The x axis is labeled Time in seconds, and the y axis is labeled Height in feet. Part A: During what interval(s) of the domain is the water balloon's height increasing? (2 points) Part B: During what interval(s) of the domain is the water balloon's height staying the same? (2 points) Part C: During what interval(s) of the domain is the water balloon's height decreasing the fastest? Use complete sentences to support your answer. (3 points) Part D: Use the constraints of the real-world situation to predict the height of the water balloon at 16 seconds.
Answer:
Part A:
Between 0 and 2 seconds, the height of the balloon increases from 60 feet to 75 feet at a rate of 7.5 ft/s
Part B:
Between 2 and 4 seconds, the height stays constant at 75 feet.
Part C:
Between 4 and 6 seconds, the height of the balloon decreases from 75 feet to 40 feet at a rate of -17.5 ft/s
Between 6 and 8 seconds, the height of the balloon decreases from 40 feet to 20 feet at a rate of -10 ft/s
Between 8 and 10 seconds, the height of the balloon decreases from 20 feet to 0 feet at a rate of -10 ft/s
Hence it fastest decreasing rate is -17.5 ft/s which is between 4 to 6 seconds.
Part D:
From 10 seconds, the balloon is at the ground (0 feet), it continues to remain at 0 feet even at 16 seconds.
Answer:
28.26m^2 (aka. 28.26 meters squared)
Step-by-step explanation:
The area of a circle is A=pi*r^2 where r is the radius of the circle.
Since r=3, then A=pi*3^2=9pi=28.26
Therefore, the area of the merry-go-round is 28.26 square meters
Answer:
2.8
Step-by-step explanation:
The equation that describes the greatest horizontal length, H, in terms of the greatest vertical length, V is H = 2V + 3.
<h3>How to compute the equation?</h3>
Your information is incomplete. Therefore, an overview will be given.
Let's assume that the value of the horizontal length is 3 plus twice the value of the the vertical length. This will be:
H = (2 × V) + 3
H = 2V + 3
In conclusion, the equation is H = 2V + 3.
Learn more about equations on:
brainly.com/question/2972832