Answer:
The velocity after 2 seconds can be found through:
V = u +a*t
Where V is final velocity, u is initial velocity, a is acceleration and t is time.
V = 0 + 2* 2= 4 meters/second
The distance (s) can be found through:
V^2= u^2 +2*a* s
Where V is final velocity, u is initial velocity, a is acceleration.
4^2= 0^2 + 2 *2*s
16= 0 + 4s
s= 4 meters
Distance (s) can also be found through:
s= ut + 1/2 at^2
s= 0+ 1/2 *2*2^2= 1 *2*2
s= 4 meters
Explanation:
Answer:
V = 9.682 × 10^(-6) V
Explanation:
Given data
thick = 190 µm
wide = 4.20 mm
magnitude B = 0.78 T
current i = 32 A
to find out
Calculate V
solution
we know v formula that is
V = magnitude× current / (no of charge carriers ×thickness × e
here we know that number of charge carriers/unit volume for copper = 8.47 x 10^28 electrons/m³
so put all value we get
V = magnitude× current / (no of charge carriers ×thickness × e
V = 0.78 × 32 / (8.47 x 10^28 × 190 × 1.602 x 10^(-19)
V = 9.682 × 10^(-6) V
Answer:
135°.
Explanation:
R = 75 ohm, L = 0.01 H, C = 4 micro F = 4 x 10^-6 F
Frequency is equal to the half of resonant frequency.
Let f0 be the resonant frequency.
f0 = 796.2 Hz
f = f0 / 2 = 398.1 Hz
So, XL = 2 x 3.14 x f x L = 2 x 3.14 x 398.1 x 0.01 = 25 ohm
Xc = 100 ohm
tan Ф = (25 - 100) / 75 = - 1
Ф = 135°
Thus, the phase difference is 135°.
The correct answer to this question is "2.1 kgm/s." The impulse results if the force acting on an object that is described by the force-time graph shown is that 2.1 kgm/s. Based on the graph, it shows like a plateau with the flat at the force of 2.1 N.