The comparison of the forces in a small nucleus to the forces of a large one is the fact that they are capable of holding the protons and neutrons which made it no matter what their size may be. Therefore, as long as there is a nucleus, their forces can both hold together the two atoms tight.
Answer:
The speed of the heavier fragment is 0.335c.
Explanation:
Given that,
Mass of the lighter fragment 
Mass of the heavier fragment 
Speed of lighter fragment = 0.893c
We need to calculate the speed of the heavier fragment
Let v is the speed of the second fragment after decay
Using conservation of relativistic momentum













Hence, The speed of the heavier fragment is 0.335c.
Answer:
The difference between a physical reaction and a chemical reaction is composition. In a chemical reaction, there is a change in the composition of the substances in question; in a physical change there is a difference in the appearance, smell, or simple display of a sample of matter without a change in composition. Although we call them physical "reactions," no reaction is actually occurring. In order for a reaction to take place, there must be a change in the elemental composition of the substance in question. Thus, we shall simply refer to physical "reactions" as physical changes from now on.
Explanation:
Physical changes are limited to changes that result in a difference in display without changing the composition. Some common changes (but not limited to) are:
Texture
Color
Temperature
Shape
Change of State (Boiling Point and Melting Point are significant factors in determining this change.)
Physical properties include many other aspects of a substance. The following are (but not limited to) physical properties.
Luster
Malleability
Ability to be drawn into a thin wire
Density
Viscosity
Solubility
Mass
Volume
Answer:
The final image relative to the converging lens is 34 cm.
Explanation:
Given that,
Focal length of diverging lens = -12.0 cm
Focal length of converging lens = 34.0 cm
Height of object = 2.0 cm
Distance of object = 12 cm
Because object at focal point
We need to calculate the image distance of diverging lens
Using formula of lens



The rays are parallel to the principle axis after passing from the diverging lens.
We need to calculate the image distance of converging lens
Now, object distance is ∞
Using formula of lens


The image distance is 34 cm right to the converging lens.
Hence, The final image relative to the converging lens is 34 cm.