If a car crashes into another car like this, the wreck should go nowhere. Besides this being an unrealistic question, the physics of it would look like this:
Momentum before and after the collision is conserved.
Momentum before the collision:
p = m * v = 50000kg * 24m/s + 55000kg * 0m/s = 50000kg * 24m/s
Momentum after the collision:
p = m * v = (50000kg + 55000kg) * v
Setting both momenta equal:
50000kg * 24m/s = (50000kg + 55000kg) * v
Solving for the velocity v:
v = 50000kg * 24m/s/(50000kg + 55000kg) = 11,43m/s
Answer:
The magnitude of the induced voltage in the loop is 20 mV.
Explanation:
given;
length of loop, L = 0.43 m
width of loop,w = 0.43 m
velocity of moved loop, v = 0.15m/s
magnetic field strength,B = 0.31 T
To determine the magnitude of the induced voltage in the loop, we apply Faraday's law;
magnitude induced E.M.F = BLv
magnitude induced E.M.F = 0.31 x 0.43 x 0.15 = 0.02 V = 20 mV
Therefore, the magnitude of the induced voltage in the loop is 20 mV.
Gamma rays are the highest energy EM radiation and typically have energies greater than 100 keV, frequencies greater than 1019 Hz, and wavelengths less than 10 picometers.
Chemical energy is transformed in your body