It is because the equator is closer to the sun and because the sun's rays hit the surface of the Earth at a higher angle at the equator. The poles are colder because they don't get direct sunlight. The sun is always low on the horizon.
Answer:
25 m/s in the opposite direction with the ship recoil velocity.
Explanation:
Assume the ship recoil velocity and velocity of the cannon ball aligns. By the law of momentum conservation, the momentum is conserved before and after the shooting. Before the shooting, the total momentum is 0 due to system is at rest. Therefore, the total momentum after the shooting must also be 0:

where
are masses of the ship and ball respectively.
are the velocities of the ship and ball respectively, after the shooting.



So the cannon ball has a velocity of 25 m/s in the opposite direction with the ship recoil velocity.
A car driving up a hill at a constant speed experiences no change in its kinetic energy while it's potential energy increases with increasing height, thus none of the options are correct.
Understanding the concept
Consider a car moving up the hill at a constant speed as shown in the figure below. The following forces act on the car:
- N is the normal reaction force acting in an upward direction
- f_s is the static friction force exerted due to friction between the road and the tires of the car
- f_k is the rolling friction force in the direction opposing that of the tire
- mg is the force acting in a downward direction.
- θ is the angle of inclination.
Here as the car is moving up the hill at a constant speed, the net force exerted on the car is zero. Also, the kinetic energy of the car will not change as its velocity is constant and the potential energy will change with increasing height. Thus, none of the given options are correct.
Learn more about motion on an incline here:
<u>brainly.com/question/13513083</u>
#SPJ4
Answer: 17.68 s
Explanation:
This problem is a good example of Vertical motion, where the main equation for this situation is:
(1)
Where:
is the height of the ball when it hits the ground
is the initial height of the ball
is the initial velocity of the ball
is the time when the ball strikes the ground
is the acceleration due to gravity
Having this clear, let's find
from (1):
(2)
Rewritting (2):
(3)
This is a quadratic equation (also called equation of the second degree) of the form
, which can be solved with the following formula:
(4)
Where:



Substituting the known values:
(5)
Solving (5) we find the positive result is:

Answer:
Explanation:
The acceleration of gravity is 9.8m/s^2.
So to calculate the time it will take to make the ball stop(which btw means the ball now reach its greatest height), use the formula V1=V0+at. V1 is the final velocity(which is 0), V0 is the starting velocity(which is 30m/s), and the a(cceleration) is 9.8m/s^2.
(You can ignore the fact "at" is -30 instead 30, it's because the directions two velocity travel are opposite. )
We can now know the time it takes to make the ball stop just by the gravitational force is about 3 sec.
Use another formula S=1/2at^2, to find out the S(height) is 1/2*9.8*3^2=44.1, which is approximately D.45m .