Answer:
The potential difference is 121.069 V
Solution:
As per the question:
Diameter of the cylinder, d = 9.0 cm = 0.09 m
Length of the cylinder, l = 40 cm = 1.4 m
Average Resistivity, 
Current, I = 100 mA = 0.1 A
Now,
To calculate the potential difference between the hands:
Cross- sectional Area of the Cylinder, A = 
Resistivity is given by:



Now, using Ohm's Law:
V = IR

Answer:
The answer cannot be determined.
Explanation:
The energy of the diver when he hits the pool will be equal to its potential energy
, and for the temperature of the pool to rise up, this energy has to be converted into the heat energy of the pool.
The change in temperature
then will be

Where m is the mass of water in the pool, c is the specific heat capacity of water, and
is the added heat which in this case is the energy of the diver.
Since we do not know the mass of the water in the pool, we cannot make this calculation.
Answer:
<h2> r=mv/Be</h2>
Explanation:
If a positive charge enters a magnetic field at 90 degrees the charge is deflected in a circular path by a force that acts perpendicular to it in line with Flemings right-hand rule
to derive the radius of the path of the charge we apply
F= mv^2/r=Bev
where
m= mass of the electronic charge
e=charge
B=magnetic field
v=average speed
r=radius
rearranging we have
r=mv^2/Bev
r=mv/Be
Answer:
z = 93.2 m
Explanation:
We can appreciate that this expression is equivalent to the linear motion equation with constant acceleration
v² = v₀² + 2 a d
If we make a term-to-term comparison with the expression obtained, they are equivalent
u² = v² + 2 a z
From here we can clear the position
2 a z = u² –v²
z = (u² –v²) / 2 a
Let's calculate
For the speed to reduce the acceleration must be negative
z = (0 - 21.8²) / 2(- 2.55)
z = 93.2 m
Answer:
The force with which the tenth car pulls the eleventh one is called tension and is equal to:
T=119715.91 N
Explanation:
The force (F) with which the tenth car pulls the eleventh one is called tension and its direction is the X-direction or horizontal. According to Newton's Second Law of motion:

That is, the force of the car is equal to the acceleration (a) times its mass (m). The acceleration is the change in the velocity divided by the time (i is for initial and f is for final).

Using Newton's second law:
To find the forces, you have to solve the equilibrium in X-direction:

Now you can substitute the accelertion in terms of velocity and time:

Solve the equation using the data from the problem, remember that the mass of the object is 10 times the mass of one car because the 10th car has to pull all the other cars:
