Answer:
The dissociation constant of phenol from given information is
.
Explanation:
The measured pH of the solution = 5.153

Initially c
At eq'm c-x x x
The expression of dissociation constant is given as:
![K_a=\frac{[C_6H_5O^-][H^+]}{[C_6H_5OOH]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BC_6H_5O%5E-%5D%5BH%5E%2B%5D%7D%7B%5BC_6H_5OOH%5D%7D)
Concentration of phenoxide ions and hydrogen ions are equal to x.
![pH=-\log[x]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5Bx%5D)
![5.153=-\log[x]](https://tex.z-dn.net/?f=5.153%3D-%5Clog%5Bx%5D)



The dissociation constant of phenol from given information is
.
Answer:
Qm = -55.8Kj/mole
Explanation:
NaOH(aq) + HNO₃(aq) => NaNO₃(aq) + H₂O(l)
Qm = (mc∆T)water /moles acid
Given => 100ml(0.300M) NaOH(aq) + 100ml(0.300M)HNO₃(aq)
=> 0.03mole NaOH(aq) + 0.03mole HNO₃(aq)
=> 0.03mole NaNO₃(aq) + 0.03mole H₂O(l)
ΔH⁰rxn = [(200ml)(1.00cal/g∙°C)(37 – 35)°C]water / 0.03mole HNO₃
= 13,333 cal/mole x 4.184J/cal = 55,787J/mol = 55.8Kj/mole (exothermic)*
Heat of reactions comes from formation of H-Oxy bonds on formation of water of reaction and heats the 200ml of solvent water from 35⁰C to 37⁰C.
1) We apply the ideal gas equation:
PV = nRT
n = (21300 x 3/1000) / (8.314 x 323)
n = 0.024
Your answer is correct.
2) Total pressure = Partial pressure of Hydrogen + Partial pressure of water
134.7 = 122.4 + Pw
Pw = 12.3 kPa
Your answer is correct
3) The molar fraction, volume fraction and pressure fraction of gasses are the same thing.
Thus, percentage pressure of Oxygen = 10%
Pressure of Oxygen = 2.04 x 10⁴ x 0.1
= 2.04 x 10³ kPa
Your answer is correct
Well done!
Answer:
0.54g of Cr
Explanation:
Current (I) = 10A
Time (t) = 100s
Molecular mass of Cr = 51.996 amu
Faraday's first law of electrolysis states that
The mass of the substance (m) of a given substance deposited at an electrode is directly proportional to the quantity of electricity or charge (Q) passed
m = nQ
M = mass of the substance
n = electrochemical constant
Q = charge passed through it
Q = IT
Q = (10 * 100) = 1000C
1 moles = molarmass = Faraday's constant (96500C)
Molar mass = Faraday's constant (96500C)
51.996 g = 96500C
How many grams will be liberated with 1000C
51.996g = 96500C
Xg = 1000C
X = (1000 * 51.996) / 96500
X = 51996 / 96500
X = 0.5388g = 0.54 g of Cr will be deposited
Answer:
Salt has long been used for flavoring and for preserving food. It has also been used in tanning, dyeing and bleaching, and the production of pottery, soap, and chlorine. Today, it is widely used in the chemical industry.