The molarity of the stock solution is 1.25 M.
<u>Explanation:</u>
We have to find the molarity of the stock solution using the law of volumetric analysis as,
V1M1 = V2M2
V1 = 150 ml
M1 = 0.5 M
V2 = 60 ml
M2 = ?
The above equation can be rearranged to get M2 as,
M2 = 
Plugin the values as,
M2 = 
= 1.25 M
So the molarity of the stock solution is 1.25 M.
Answer:
Your questions requires diagrams of the cell to get which one is on the left or right. However, see the attached file below
The correct answer is (d) the left half-cell will decrease in concentration; and the right half-cell will increase in concentration.
Explanation:
The concentration of the Pb2+ increases in the oxidation half cell while the concentration of the Pb2+ decreases in the reduction half cell during the reaction.
In the Left Beaker (Left half cell), their is less concentration
Pb(s) ---> Pb2+(aq) + 2 e- Concentration of Pb2+(aq) increase ; Electrons going out from this side
In the Right Beaker (right half cell), their is more concentration
Pb2+(aq) + 2 e- ---> Pb(s) Concentration of Pb2+(aq) decrease ; Electrons coming in to this side
Electrons will flow from Left to Right direction.
Answer:
You can find the volume of an irregular object by immersing it in water in a beaker or other container with volume markings, and by seeing how much the level goes up. Or by multiplying all the sides of the container. #markasbrainliest
Answer:
Potential energy is the energy stored within an object, due to the object's position, arrangement or state. Potential energy is one of the two main forms of energy, along with kinetic energy.
Explanation:
Answer:
10 L
Explanation:
The only variables are pressure and volume, so we can use Boyle's Law:
p1V1 = p2V2
Data:
p1 = 125 atm; V1 = 4.0 L
p2 = 50 atm; V2 = ?
Calculation:
125 × 4.0 = 50V2
500 = 50 V2
V2 = 500/50 = 10 L
The new volume will be 10 L.