Answer:- 335 kcal of heat energy is produced.
Solution:- The balanced equation for the combustion of glucose in presence of oxygen to give carbon dioxide and water is:

From given info, 2803 kJ of heat is released bu the combustion of 1 mol of glucose. We need to calculate the energy produced when 3.00 moles of oxygen react with excess of glucose.
We could solve this using dimensional analysis as:

= 1401.5 kJ
Now, let's convert kJ to kcal.
We know that, 1kcal = 4.184kJ
So, 
= 335 kcal
Hence, 335 kcal of heat energy is produced by the use of 3.00 moles of oxygen gas.
To get the theoretical yield of ammonia NH3:
first, we should have the balanced equation of the reaction:
3H2(g) + N2(g) → 2NH3(g)
Second, we start to convert mass to moles
moles of N2 = N2 mass / N2 molar mass
= 200 / 28 = 7.14 moles
third, we start to compare the molar ratio from the balanced equation between N2 & NH3 we will find that N2: NH3 = 1:2 so when we use every mole of N2 we will get 2 times of that mole of NH3 so,
moles of NH3 = 7.14 * 2 = 14.28 moles
finally, we convert the moles of NH3 to mass again to get the mass of ammonia:
mass of NH3 = no.moles * molar mass of ammonia
= 14.28 * 17 = 242.76 g
<span>The composition of a fertilizer is usually express in NPK number. NPK number is in terms of Percent by mass of the said element which are Nitrogen, Phosphorus and Potassium. A 15-35-15 fertilizer has 15%
Nitrogen, 35% Phosphorous, and 15% Potassium by mass. If you have 10 g of this
fertilizer, to get the number of moles of phosphorus, you multiply the mass by
35%, which is equal to 10*0.35 or 3.5 g phosphorus. Then you divide the
calculated mass of phosphorous by its molar mass which is 30.97 g/mol.
Therefore, you have 3.5/30.97 which is equal to 0.1130 mol Phosphorus. This is the amount of Phosphorus in moles in the fertilizer.</span>