1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kolezko [41]
3 years ago
7

What causes the recognition of an element from its energy signature?

Chemistry
1 answer:
Helga [31]3 years ago
8 0

Answer:

I'm so sorry if this is wrong but I think its B

You might be interested in
Determine how many liters of hydrogen adjusted to STP there are in a 50.0 liter steel cylinder if the pressure inside is 100.0 a
Dvinal [7]

Answer : The volume of hydrogen gas at STP is 4550 L.

Explanation :

Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.

The combined gas equation is,

\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}

where,

P_1 = initial pressure of gas = 100.0 atm

P_2 = final pressure of gas at STP = 1 atm

V_1 = initial volume of gas = 50.0 L

V_2 = final volume of gas at STP = ?

T_1 = initial temperature of gas = 27.0^oC=273+27.0=300K

T_2 = final temperature of gas at STP = 0^oC=273+0=273K

Now put all the given values in the above equation, we get:

\frac{100.0atm\times 50.0L}{300K}=\frac{1atm\times V_2}{273K}

V_2=4550L

Therefore, the volume of hydrogen gas at STP is 4550 L.

3 0
3 years ago
Why is it important for organelles to double during the G2 phase of the cell cycle?
boyakko [2]

Explanation:

so then we would know about the reproduction system and how we are born and what happens with the cells inside the womens womb and how the sperm cell meets the egg cell and creates the egg

6 0
2 years ago
Determine Z and V for steam at 250°C and 1800 kPa by the following: (a) The truncated virial equation [Eq. (3.38)] with the foll
makvit [3.9K]

Answer:

Explanation:

Given that:

the temperature T_1 = 250 °C= ( 250+ 273.15 ) K = 523.15 K

Pressure = 1800 kPa

a)

The truncated viral equation is expressed as:

\frac{PV}{RT} = 1 + \frac{B}{V} + \frac{C}{V^2}

where; B = - 152.5 \ cm^3 /mol   C = -5800 cm^6/mol^2

R = 8.314 × 10³ cm³ kPa. K⁻¹.mol⁻¹

Plugging all our values; we have

\frac{1800*V}{8.314*10^3*523.15} = 1+ \frac{-152.5}{V} + \frac{-5800}{V^2}

4.138*10^{-4}  \ V= 1+ \frac{-152.5}{V} + \frac{-5800}{V^2}

Multiplying through with V² ; we have

4.138*10^4  \ V ^3 = V^2 - 152.5 V - 5800 = 0

4.138*10^4  \ V ^3 - V^2 + 152.5 V + 5800 = 0

V = 2250.06  cm³ mol⁻¹

Z = \frac{PV}{RT}

Z = \frac{1800*2250.06}{8.314*10^3*523.15}

Z = 0.931

b) The truncated virial equation [Eq. (3.36)], with a value of B from the generalized Pitzer correlation [Eqs. (3.58)–(3.62)].

The generalized Pitzer correlation is :

T_c = 647.1 \ K \\ \\ P_c = 22055 \  kPa  \\ \\ \omega = 0.345

T__{\gamma}} = \frac{T}{T_c}

T__{\gamma}} = \frac{523.15}{647.1}

T__{\gamma}} = 0.808

P__{\gamma}} = \frac{P}{P_c}

P__{\gamma}} = \frac{1800}{22055}

P__{\gamma}} = 0.0816

B_o = 0.083 - \frac{0.422}{T__{\gamma}}^{1.6}}

B_o = 0.083 - \frac{0.422}{0.808^{1.6}}

B_o = 0.51

B_1 = 0.139 - \frac{0.172}{T__{\gamma}}^{ \ 4.2}}

B_1 = -0.282

The compressibility is calculated as:

Z = 1+ (B_o + \omega B_1 ) \frac{P__{\gamma}}{T__{\gamma}}

Z = 1+ (-0.51 +(0.345* - 0.282) ) \frac{0.0816}{0.808}

Z = 0.9386

V= \frac{ZRT}{P}

V= \frac{0.9386*8.314*10^3*523.15}{1800}

V = 2268.01 cm³ mol⁻¹

c) From the steam tables (App. E).

At T_1 = 523.15 \  K \ and  \ P = 1800 \ k Pa

V = 0.1249 m³/ kg

M (molecular weight) = 18.015 gm/mol

V  =  0.1249 × 10³ × 18.015

V = 2250.07 cm³/mol⁻¹

R = 729.77 J/kg.K

Z = \frac{PV}{RT}

Z = \frac{1800*10^3 *0.1249}{729.77*523.15}

Z = 0.588

3 0
2 years ago
Calculate the volume of 38.0 g of carbon dioxide at STP. Enter your answer in the box provided. L
Free_Kalibri [48]

Answer:

19.3 L

Explanation:

V= n × 22.4

where V is volume and n is moles

First, to find the moles of CO2, divide 38.0 by the molecular weight of CO2 which is 44.01

n= m/ MM

n= 38/ 44.01

n= 0.86344012724

V= 0.86344012724 × 22.4

V= 19.3410588502 L

V= 19.3 L

7 0
2 years ago
G.com what is the mass of a gold bar that is 7.379 × 10–4 m3 in volume
tiny-mole [99]
<span>7.379 * 10^(-4) is measured, hence prone to error, either human error or via measuring device. In this case,
100 cm = 1 m is written in stone and is unquestionable.
 The density of the gold is 19.3 g/cm^3 and could be an approximation.
 The approximation is good to at least one night.</span>
5 0
2 years ago
Other questions:
  • A sample of an unknown gas effuses in 11.1 min. An equal volume of H2 in the same apparatus at the same temperature and pressure
    8·1 answer
  • What is carbon-14 radioactive dating used for
    9·1 answer
  • Which element is a gas at STP?<br> 1)sulfur<br> 2)xenon<br> 3)potassium<br> 4)phosphorus
    5·2 answers
  • Express the following answers with the correct number of significant figures.<br> 3.582 ÷ 0.0131
    5·1 answer
  • At the equator Earth rotates with a velocity of about 465 m/s. What is this velocity in kilometers per day?
    15·1 answer
  • How many grams of H2SO4 are needed to prepare 500. mL of a .250M solution?
    8·1 answer
  • What is the correct interpretation of the mole ratios for the elements in
    10·1 answer
  • Why is the manatee classified as an herbivore?
    7·2 answers
  • What is Waves? Please help will give brainliest
    14·1 answer
  • If the pressure on a 1.04 L sample of gas is doubled at constant temperature, please compute the new volume of gas: __
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!