24. <span>Valence electrons are most loosely held by the atom and are involved in chemical reactions. Chemical reactions occur when valence electrons are shared between atoms. The number of valence electrons determines how these reactions take place and what kind of bonds they form.
25 </span><span>Sodium has one valence electron and chlorine has seven valence electrons. The Ione valence electron from sodium is lost and is transferred to the chlorine atom. The result is a sodium ion with a charge of 1+ and a chloride ion with a charge of 1-. The oppositely charged ions attract each other and the charges balance to make a compound that is electrically neutral.
26. </span><span>Ionic compounds have high melting points and high boiling points compared to molecular compounds. Ionic compounds that are dissolved in water or melted will conduct electricity. Molecular compounds do not conduct electricity in either case.
27. </span><span>A covalent bond is formed when two atoms share valence electrons. Neither atom loses electrons or takes electrons from the other. No charged particles form. In an ionic bond, one or more electrons are transferred from one atom to another. Atoms that lose electrons become positively charged ions, and atoms that gain electrons become negatively charged ions. These oppositely charged particles then attract each other.
28. </span><span>A metal crystal consists of positively charged metal ions embedded in a "sea" of loosely held valence electrons that can move around easily. Heat travels through materials as the increased motion of the particles in the hotter parts of the material is passed along to the particles in the cooler parts. In a metal, since particles are easily set in motion, heat is easily transferred or conducted. The same is true for the conduction of electricity. Electricity can flow when charged particles, such as electrons, are free to move. Since the electrons in a metal crystal can move freely among the atoms, electricity is easily conducted.</span>
Answer:
GOOD MORNING DIDI be happy
Answer:
2.11 x 10²⁴ molecules.
Explanation:
- <em>It is known that every 1.0 mole of a molecule contains Avogadro's number of molecules (NA = 6.022 x 10²³).</em>
<em><u>Using cross multiplication:</u></em>
1.0 mole of H₂O contains → 6.022 x 10²³ molecules.
3.5 mole of H₂O contains → ??? molecules.
∴ 3.5 mole of H₂O contain = (3.5 mol)(6.022 x 10²³) = 2.11 x 10²⁴ molecules.
2. <span>High pressure and low temperature
Hope this helps </span>
Answer:
2.52 g NaCl
Explanation:
(Step 1)
To find the mass, you first need to find the moles NaCl. This value can be found using the molarity ratio:
Molarity = moles / volume (L)
After you convert mL to L, you can plug the given values into the equation and simplify to find moles.
136.9 mL / 1,000 = 0.1369 L
Molarity = moles / volume
0.315 M = moles / 0.1369 L
0.0431 = moles
(Step 2)
Now, you can use the molar mass to convert moles to grams.
Molar Mass (NaCl): 22.990 g/mol + 35.453 g/mol
Molar Mass (NaCl): 58.443 g/mol
0.0431 moles NaCl 58.443 g
------------------------------ x ------------------- = 2.52 g NaCl
1 mole