Answer:
93.5 moles N₂
Explanation:
To find the moles, you need to use the Ideal Gas Law. The equation looks like this:
PV = nRT
In this equation,
-----> P = pressure (atm)
-----> V = volume (L)
-----> n = number of moles
-----> R = constant (0.0821 atm*L/mol*K)
-----> T = temperature (K)
You can plug the given values into the equation and simplify to find moles. The final answer should have 3 sig figs to match the lowest number of sig figs among the given values.
P = 95.0 atm R = 0.0821 atm*L/mol*K
V = 224 L T = 2773 K
n = ?
PV = nRT
(95.0 atm)(224 L) = n(0.0821 atm*L/mol*K)(2773 K)
21280 = n(227.6633)
93.5 = n
It’s option D cause we know that S orbital is spherical
Answer:
option D
Explanation:
Increasing the temperature increases the yield of ammonia and speeds up the reaction as chemical reaction is affected by temperature.
Answer:
Energy is absorbed, and an emission line is produced.
Explanation:
Electrons are present and revolving continuously in the orbits that are present around the nucleus. The energy of electron are fixed and unable to move to other orbits due to the strong attractive force of the proton which is present in the nucleus of the atom. If the electron wants to jump from the first energy level to the second energy level, so the electron has to absorb enough energy which can overcome the attractive force of proton.
The answer is B particles combine into a large amount of engery.