My answer to this question is C
Answer:
Percentage mass of copper in the sample = 32%
Explanation:
Equation of the reaction producing Cu(NO₃) is given below:
Cu(s)+ 4HNO₃(aq) ---> Cu(NO₃)(aq) + 2NO₂(g) + 2H₂O(l)
From the equation of reaction, 1 mole of Cu(NO₃) is produced from 1 mole of copper. Therefore, 0.010 moles of Cu(NO₃) will be produced from 0.010 mole of copper.
Molar mass of copper = 64 g/mol
mass of copper = number of moles * molar mass
mass of copper = 0.01 mol * 64 g/mol = 0.64 g
Percentage by mass of copper in the 2.00 g sample = (0.64/2.00) * 100%
Percentage mass of copper in the sample = 32%
I’m pretty sure it’s A or C
Answer: 26.5 mm Hg
Explanation:
The vapor pressure is determined by Clausius Clapeyron equation:

where,
= initial pressure at
= ?
= final pressure at
= 100 mm Hg
= enthalpy of vaporisation = 28.0 kJ/mol =28000 J/mol
R = gas constant = 8.314 J/mole.K
= initial temperature = 
= final temperature =
Now put all the given values in this formula, we get
![\log (\frac{P_1}{100})=\frac{28000}{2.303\times 8.314J/mole.K}[\frac{1}{299.5}-\frac{1}{267.9}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BP_1%7D%7B100%7D%29%3D%5Cfrac%7B28000%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B299.5%7D-%5Cfrac%7B1%7D%7B267.9%7D%5D)



Thus the vapor pressure of
in mmHg at 26.5 ∘C is 26.5
Answer:
Diffusion in gases
Diffusion is driven by differences in concentration. When chemical substances such as perfume are let loose in a room, their particles mix with the particles of air. The particles of smelly gas are free to move quickly in all directions
Explanation:
hope this helps