Answer:
The exceptions to the periodic trends in ionization energy are the first ionization energy of beryllium is higher than that of boron and the first ionization energy of nitrogen is also higher than that of oxygen.
Explanation:
Taking a close look at the figure of first ionization energies, it clearly shows that the first ionization energy of beryllium is higher than that of boron and the first ionization energy of nitrogen is also higher than that of oxygen.
This is as a result of Hund's rule and electron configuration. For example, the first ionization potential electron of beryllium is obtained from a 2s orbital while that of boron comes from a 2p electron. However, for oxygen and nitrogen, their electrons are obtained from 2p orbitals. While spin is uniform for all 2p electrons of nitrogen, it is different for oxygen.
Answer:
Both molarity and formality express concentration as moles of solute per liter of solution. Formality is a substance's total concentration in solution without regard to its specific chemical form. ... The formality of a solution is defined as the number of formula mass of any solute dissolved in 1 litre of solution.
Answer:
In first shell duplet rule is applied because first shell contains maximum 2 electrons
Explanation:
The boiling point of oxygen is higher than nitrogen's boiling
The reason the boiling point of O2 is higher is not because of increased van der Waals interactions, but simple physics. The mass of a molecule of O2 is greater than that of a molecule of N2, so the molecule of O2 traveling at a speed sufficient to break out of the liquid phase has a greater kinetic energy than an analogous N2 molecule.
The net effect is that more energy must be distributed throughout a sample of O2 to achieve a given vapor pressure (in this case equal to atmospheric pressure) than for a sample of N2. More energy means greater temperature.