Answer:
Using the formula cards again, add the coefficient of 2 in front of the formula and have them recalculate the number of each element and the total number of atoms in each element.
Explanation:
<u>a) Answer: </u>
<em>Number of molecules in 1 mole</em>
<u>Explanation:</u>
a) Whether we take any of the substance among all three of the given substances they will have the same number of molecules in 1 mole of the substance is considered and the value for this will be 
<u>b) Answer: </u>
<em>In the given question </em><em>mass of the substance</em><em> which is </em><em>greatest</em><em> is asked for </em><em>one mole</em><em> and we also know that </em><em>mass of one mole is given by molar mass. </em>
<u>Explanation:</u>
b) It is known that
is the molar mass for oxygen which is greater than that of hydrogen while fluorine has a molar mass of
which on comparison shows that, it is the highest amongst all three.
You can answer this question by only searching the element in the periodic table.
The atomic number of iodine, I, is 53. It is placed in the column 17 (this is the Group) and row 5 (this is the Period).
The conclusion is that the iodine is located in Period 5, Group 17, and is classified as a nonmetal.
Answer:
Explanation:
For a flower to appear blue, "it needs to be able to produce a molecule that can absorb very small amounts of energy," in order to absorb the red part of the spectrum, Kupferschmidt said.