3.16 X 10^-11 M is the [OH-] concentration when H3O+ = 1.40 *10^-4 M.
Explanation:
data given:
H30+= 1.40 X 10^-4 M\
Henderson Hasslebalch equation to calculate pH=
pH = -log10(H30+)
putting the values in the equation:
pH = -log 10(1.40 X 10^-4 M)
pH = 3.85
pH + pOH =14
pOH = 14 - 3.85
pOH = 10.15
The OH- concentration from the pOH by the equation:
pOH = -log10[OH-]
10.5= -log10[OH-]
[OH-] = 10^-10.5
[OH-] = 3.16 X 10^-11 is the concentration of OH ions when hydronium ion concentration is 1.40 *10^-4 M.
To determine the mass of the sample, first find the volume difference after and before the aluminum was placed, the volume change is equal to the volume of the submerged object, in this case aluminum.
Then knowing volume of aluminum and the density of it, we can solve for the mass.
D = m/v
Dv = m
2.7 g/ml • 8 ml = 21.6 grams.
Answer:
The concentrations are :
The pH of the solution is 3.15.
Explanation:
Initial
c 0 0
Equilibrium
c-x x x
Solving for x:
x = 0.000702 M
Initially
x 0 0
At equilibrium ;
(x - y) y y
Putting value of x = 0.000702 M
Total concentration of
The pH of the solution :
Answer:
Explanation:
Polarity is about differencens in electronegativity. CH bonds have around the same electronegativity value so a CH bond is nonpolar. The more CH bonds there are in a molecule, the more nonpolar it is. Since CH3CH2OH has more carbon-hydrogen bonds than CH3OH, it is more nonpolar. With the same reasoning, since CH3OH has less CH bonds, it's more polar.
The number of mole of Ca reacted is:
4.86 g Ca/ (40.08 g/mol Ca)= 0.121 mol Ca
Because Ca reacted completely with oxygen and there is 2 mol Ca, there is 1 mol O2 reacted.
Total mass of oxygen that reacted is:
0.121 mol Ca* (1mol O2/ 2 mol Ca)* (32 g O2/ 1 mol O2)= 1.94 g O2 reacted.
Hope this would help~