Answer:
The value of Ka 
It is a weak acid
Explanation:
From the question we are told that
The concentration of ![[HClO_2]=0.24M](https://tex.z-dn.net/?f=%5BHClO_2%5D%3D0.24M)
The concentration of ![[H^+]=0.051M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.051M)
The concentration of ![[ClO_2^-]=0.051M](https://tex.z-dn.net/?f=%5BClO_2%5E-%5D%3D0.051M)
Generally the equation for the ionic dissociation of
is

The equilibrium constant is mathematically represented as

![= \frac{[H^+][ClO_2^-]}{[HClO_2]}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B%5BH%5E%2B%5D%5BClO_2%5E-%5D%7D%7B%5BHClO_2%5D%7D)
Substituting values since all value of concentration are at equilibrium


Since the value of is less than 1 it show that in water it dose not completely
disassociated so it an acid that is weak
Answer:
I think it is 100 if I guess
To determine the strength of potassium permanganate with a standard solution of oxalic acid.
Answer is 0.289nm.
Explanation: The wt % of Fe and wt % of V is given for a Fe-V alloy.
wt % of Fe in Fe-V alloy = 85%
wt % of V in Fe-V alloy = 15%
We need to calculate edge length of the unit cell having bcc structure.
Using density formula,

For calculating edge length,

For calculating
, we use the formula

Similarly for calculating
, we use the formula

From the periodic table, masses of the two elements can be written


Specific density of both the elements are

Putting
and
formula's in edge length formula, we get
![a=\left [\frac{Z\left (\frac{100}{\frac{(wt\%)_{Fe}}{M_{Fe}}+\frac{(wt\%)_{Fe}}{M_{Fe}}} \right )}{N_A\left (\frac{100}{\frac{(wt\%)_V}{\rho_V}+\frac{(wt\%)_V}{\rho_V}} \right )} \right ]^{1/3}](https://tex.z-dn.net/?f=a%3D%5Cleft%20%5B%5Cfrac%7BZ%5Cleft%20%28%5Cfrac%7B100%7D%7B%5Cfrac%7B%28wt%5C%25%29_%7BFe%7D%7D%7BM_%7BFe%7D%7D%2B%5Cfrac%7B%28wt%5C%25%29_%7BFe%7D%7D%7BM_%7BFe%7D%7D%7D%20%20%5Cright%20%29%7D%7BN_A%5Cleft%20%28%5Cfrac%7B100%7D%7B%5Cfrac%7B%28wt%5C%25%29_V%7D%7B%5Crho_V%7D%2B%5Cfrac%7B%28wt%5C%25%29_V%7D%7B%5Crho_V%7D%7D%20%20%5Cright%20%29%7D%20%20%5Cright%20%5D%5E%7B1%2F3%7D)
![a=\left [\frac{2atoms/\text{unit cell}\left (\frac{100}{\frac{85\%}{55.85g/mol}+\frac{15\%}{50.941g/mol}} \right )}{(6.023\times10^{23}atoms/mol)\left (\frac{100}{\frac{85\%}{7.874g/cm^3}+\frac{15\%}{6.10g/cm^3}} \right )} \right ]^{1/3}](https://tex.z-dn.net/?f=a%3D%5Cleft%20%5B%5Cfrac%7B2atoms%2F%5Ctext%7Bunit%20cell%7D%5Cleft%20%28%5Cfrac%7B100%7D%7B%5Cfrac%7B85%5C%25%7D%7B55.85g%2Fmol%7D%2B%5Cfrac%7B15%5C%25%7D%7B50.941g%2Fmol%7D%7D%20%20%5Cright%20%29%7D%7B%286.023%5Ctimes10%5E%7B23%7Datoms%2Fmol%29%5Cleft%20%28%5Cfrac%7B100%7D%7B%5Cfrac%7B85%5C%25%7D%7B7.874g%2Fcm%5E3%7D%2B%5Cfrac%7B15%5C%25%7D%7B6.10g%2Fcm%5E3%7D%7D%20%20%5Cright%20%29%7D%20%20%5Cright%20%5D%5E%7B1%2F3%7D)
By calculating, we get
