Answer:
IQ scores of at least 130.81 are identified with the upper 2%.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 100 and a standard deviation of 15.
This means that 
What IQ score is identified with the upper 2%?
IQ scores of at least the 100 - 2 = 98th percentile, which is X when Z has a p-value of 0.98, so X when Z = 2.054.




IQ scores of at least 130.81 are identified with the upper 2%.
Answer:
Step-by-step explanation:
The question is incomplete. Here is the complete question.
The upper-left coordinates on a rectangle are (−5,6) and the upper-right coordinates are (−2,6). The rectangle has a perimeter of 16units. Draw the rectangle on the coordinate plane below.
If the coordinates of the top of the triangle (breadth) is (−5,6) and (−2,6), we can calculate the breadth of the rectangle by taking the difference between the two points using the formula:
D = √(y₂-y₁)²+(x₂-x₁)²
Given x₁ = -5, y₁= 6, x₂ = -2 and y₂ = 6
D = √(6-6)²+(-2-(-5))²
D = √0²+3²
D = √9
D = 3 units
Breadth = 3 units
Given the Perimeter to be 16 units and the formula for calculating the perimeter of rectangle t be P = 2(L+B), we can get the length of the rectangle.
16 = 2(3+L)
16 = 6+2L
16-6 = 2L
2L = 10
L = 10/2
L = 5 units.
<em>Hence the length of the rectangle is 5 units and the breadth is 3 units. Find the diagram in the attachment.</em>
<h2><u>A = 4</u> is the correct answer!</h2><h3></h3><h3>3 x ? = 12</h3><h3>12 ÷ 3 = 4</h3><h3>so</h3><h3>1 x 4 = 4</h3><h3 /><h3>You're wrong. It is not six.</h3><h3>By the way, it's "one" not "won".</h3><h3>It was probably a mistake.</h3><h3>:)</h3><h3 /><h3><em>Please let me know if I am wrong.</em></h3>
Answer:
its legit 5
Step-by-step explanation: