Answer:
Natural gas combustion equation:
CH4 + O2 ==> CO2 + 2 H2O + HEAT
Octane or oil combustion equation:
2C8H18 + 25 O2 ===> 16CO2 + 18 H2O.
If these fuels were replaced by self-sustaining energy sources, the contamination of the environment would be less, since their combustion generates toxic compounds that damage the ozone layer, promoting the greenhouse effect, increasing the Earth's temperature and also promoting the increase in the passage of ultraviolet radiation.
Explanation:
The combustion reactions are exothermic, and irreversible, they can be complete and incomplete combustions.
They always consist of oxygen as a reagent and water and carbon dioxide as a product (complete), in the case of the incomplete the difference is that the products vary and there may be waste or chemical compounds that failed to burn.
The answer is D, reactant.
Hydrogen ion, strictly, the nucleus of a hydrogen atom separated from its accompanying electron. The hydrogen nucleus is made up of a particle carrying a unit positive electric charge, called a proton. The isolated hydrogen ion, represented by the symbol H+, is therefore customarily used to represent a proton.
Answer:
Rb+
Explanation:
Since they are telling us that the equivalence point was reached after 17.0 mL of 2.5 M HCl were added , we can calculate the number of moles of HCl which neutralized our unknown hydroxide.
Now all the choices for the metal cation are monovalent, therefore the general formula for our unknown is XOH and we know the reaction is 1 equivalent acid to 1 equivalent base. Thus we have the number of moles, n, of XOH and from the relation n = M/MW we can calculate the molecular weight of XOH.
Thus our calculations are:
V = 17.0 mL x 1 L / 1000 mL = 0.017 L
2.5 M HCl x 0.017 L = 2.5 mol/ L x 0.017 L = 0.0425 mol
0.0425 mol = 4.36 g/ MW XOH
MW of XOH = (atomic weight of X + 16 + 1)
so solving the above equation we get:
0.0425 = 4.36 / (X + 17 )
0.7225 +0.0425X = 4.36
0.0425X = 4.36 -0.7225 = 3.6375
X = 3.6375/0.0425 = 85.59
The unknown alkali is Rb which has an atomic weight of 85.47 g/mol