Answer:
A. It is the only one that makes sense
Explanation:
Answer:
People have been aware of magnets and magnetism for thousands of years. The earliest records date back to ancient times, particularly in the region of Asia Minor called Magnesia-the name of this region is the source of words like magnet. Magnetic rocks found in Magnesia, which is now part of western Turkey, stimulated interest during ancient times. When humans first discovered magnetic rocks, they likely found that certain parts of these rocks attracted bits of iron or other magnetic rocks more strongly than other parts. These areas are called the poles of a magnet. A magnetic pole is the part of a magnet that exerts the strongest force on other magnets or magnetic material, such as iron. For example, the poles of the bar magnet shown in Figure 20.2 are where the paper clips are concentrated.
Answer:
v = 8.09 m/s
Explanation:
For this exercise we use that the work done by the friction force plus the potential energy equals the change in the body's energy.
Let's calculate the energy
starting point. Higher
Em₀ = U = m gh
final point. To go down the slope
Em_f = K = ½ m v²
The work of the friction force is
W = fr L cos 180
to find the friction force let's use Newton's second law
Axis y
N - W_y = 0
N = W_y
X axis
Wₓ - fr = ma
let's use trigonometry
sin θ = y / L
sin θ = 11/110 = 0.1
θ = sin⁻¹ 0.1
θ = 5.74º
sin 5.74 = Wₓ / W
cos 5.74 = W_y / W
Wₓ = W sin 5.74
W_y = W cos 5.74
the formula for the friction force is
fr = μ N
fr = μ W cos θ
Work is friction force is
W_fr = - μ W L cos θ
Let's use the relationship of work with energy
W + ΔU = ΔK
-μ mg L cos 5.74 + (mgh - 0) = 0 - ½ m v²
v² = - 2 μ g L cos 5.74 +2 (gh)
v² = 2gh - 2 μ gL cos 5.74
let's calculate
v² = 2 9.8 11 - 2 0.07 9.8 110 cos 5.74
v² = 215.6 -150.16
v = √65.44
v = 8.09 m/s
As the water russhes toward the shore, it rises because it is pushing against it.<span />