Answer : The net ionic equation will be,

Explanation :
In the net ionic equations, we are not include the spectator ions in the equations.
Spectator ions : The ions present on reactant and product side which do not participate in a reactions. The same ions present on both the sides.
The given balanced ionic equation will be,

In this equation,
are the spectator ions.
By removing the spectator ions from the balanced ionic equation, we get the net ionic equation.
Thus, the net ionic equation will be,

Answer:
Approximately
.
Explanation:
Convert both volumes to standard units (that is: liters.)
.
.
Number of moles of
initially present (in the
solution at
.)
.
Number of moles of
from the titration:
.
neutralizes
at a
ratio:
.
Hence,
.
.
A or B depends on what you mean by lit or glowing but when you place a wooden split in the sample the gas must reignite but there can be some confusion between hydrogen and oxygen mainly because a splint can cause a slight popping sound while it reignites but hydrogen pops are more violent and can most time extinguish the splint.
Answer:
1.85g per cubic centimeter (g/cm3
Explanation:
because density=mass/volume, so it will be 50g divide by 27ml =. 1.85g/cm3
Answer:
ΔSv = 0.1075 KJ/mol.K
Explanation:
Binary solution:
∴ a: solvent
∴ b: solute
in equilibrium:
- μ*(g) = μ(l) = μ* +RTLnXa....chemical potential (μ)
⇒ Ln (1 - Xb) = ΔG/RT
∴ ΔG = ΔHv - TΔSv
⇒ Ln(1 -Xb) = ΔHv/RT - ΔSv/R
∴ Xb → 0:
⇒ Ln(1) = ΔHv/RT - ΔSv/R
∴ T = T*b....normal boiling point
⇒ 0 = ΔHv/RT*b - ΔSv/R
⇒ ΔSv = (R)(ΔHv/RT*b)
⇒ ΔSv = ΔHv/T*b
∴ T*b = 80°C ≅ 353 K
⇒ ΔSv = (38 KJ/mol)/(353 K)
⇒ ΔSv = 0.1075 KJ/mol.K