Answer:
Step-by-step explanation:
For each component, there are only two possible outcomes. Either it fails, or it does not. The components are independent. We want to know how many outcomes until r failures. The expected value is given by

In which r is the number of failures we want and p is the probability of a failure.
In this problem, we have that:
r = 1 because we want the first failed unit.
![p = 0.4[\tex]So[tex]E = \frac{r}{p} = \frac{1}{0.4} = 2.5](https://tex.z-dn.net/?f=p%20%3D%200.4%5B%5Ctex%5D%3C%2Fp%3E%3Cp%3ESo%3C%2Fp%3E%3Cp%3E%5Btex%5DE%20%3D%20%5Cfrac%7Br%7D%7Bp%7D%20%3D%20%5Cfrac%7B1%7D%7B0.4%7D%20%3D%202.5)
The expected number of systems inspected until the first failed unit is 2.5
Answer: 04
Explanation: We are given 3-2x=-5. We would subtract 3 from both sides. The equation would then look like this after subtraction from both sides: -2x=-8. We would then divide -2 by both sides so we can isolate the variable. The equation would look like this x=4.
3-2x=-5
-2x=-8
x=4
Answer:
yes it is cause it has a slope and stuff
Answer:
True
Step-by-step explanation:
A six sigma level has a lower and upper specification limits between
and
. It means that the probability of finding no defects in a process is, considering 12 significant figures, for values symmetrically covered for standard deviations from the mean of a normal distribution:

For those with defects <em>operating at a 6 sigma level, </em>the probability is:

Similarly, for finding <em>no defects</em> in a 5 sigma level, we have:
.
The probability of defects is:

Well, the defects present in a six sigma level and a five sigma level are, respectively:
Then, comparing both fractions, we can confirm that a <em>6 sigma level is markedly different when it comes to the number of defects present:</em>
[1]
[2]
Comparing [1] and [2], a six sigma process has <em>2 defects per billion</em> opportunities, whereas a five sigma process has <em>600 defects per billion</em> opportunities.
Answer:
B
Step-by-step explanation:
8*5/6= 20/3 which is equal to 40/6 or forty sixths
Please mark brainlest