Answer:
Explanation:
The formula for gravitational potential energy is
Ep = m · g · h Assuming that the acceleration is g = 10m/s²
Ep = 45.4 · 10 · 21.9 = 9,942.6 J
God is with you!!!
Hello there! Quantitive data has to do with measurements that can be shown with numbers. Examples of this are things like your height and the length of your arms. With that alone, A and B are eliminated, because those answer choices make no sense. They can't be expressed by numbers and you can't measure colors or odors mathematically. Volume is a way to measure something that CAN be written down by numbers. D is the only answer choice that fits the definition of quantitive data. The answer is D: volume.
Answer:
8100W
Explanation:
Let g = 10m/s2
As water is falling from 60m high, its potential energy from 60m high would convert to power. So the rate of change in potential energy is
or 9000W
Since 10% of this is lost to friction, we take the remaining 90 %
P = 9000*90% = 8100 W
Answer:
141.78 ft
Explanation:
When speed, u = 44mi/h, minimum stopping distance, s = 44 ft = 0.00833 mi.
Calculating the acceleration using one of Newton's equations of motion:

Note: The negative sign denotes deceleration.
When speed, v = 79mi/h, the acceleration is equal to when it is 44mi/h i.e. -116206.48 mi/h^2
Hence, we can find the minimum stopping distance using:

The minimum stopping distance is 141.78 ft.
Calculate the magnitude of the linear momen- tum for each of the following cases a) a proton with mass 1.67 × 10-27 kg mov- ing with a velocity of 6 × 106 m/s. Answer in units of kg · m/s.