The period, speed and acceleration of a satellite are only dependent upon the radius of orbit and the mass of the central body that the satellite is orbiting. I hope this helps. Sorry if i am wrong.
Lmalemwlsnlenekenfndelenekf
Explanation:
initial height, yo = 2 m
initial velocity, u = 20 m/s
angle of projection,θ = 5 degree
distance of net = 7 m
height of net = 1 m
Let it covers a vertical distance y in time t .
Use Second equation of motion for vertical motion
As it hits the ground in time t, so put y = 0
Taking positive sign, t = 0.84 s
The ball travels a horizontal distance x in time t
X = 20 Cos5 x t
X = 16.76 m
As this distance is more than the distance of net, so it clears the net.
Let t' be the time taken to travel a horizontal distance equal to the distance of net
7 = 20 cos5 x t'
t' = 0.35 s
Let the vertical distance traveled by the ball in time t' is y'.
So,
y' = 2.008 m
So, it clears the net which is 1 m high.
It clears the net by a vertical distance of 2.008 - 1 = 1.008 m and horizontal distance 16.76 - 7 = 9.76 m
your welcome, and have a great day.
Answer: 0.4 m
Explanation:
Given
Speed of ambulance, vs = 61.9 m/s
Speed of car = 28.5 m/s
Frequency of ambulance siren, f = 694 Hz
Velocity of sound in air, v = 343 m/s
With speed of ambulance being (61.9 m/s) -> We solve using
fd = f(v + vr) / (v - vs), where vr = 0
fd = 694 * (343 + 0) / (343 - 61.9)
fd = 694 * (343 / 281.1)
fd = 694 * 1.22
fd = 847 Hz
Recall,
λ = v/f
λ = 343/847
λ = 0.4 m
Therefore, the wavelength of the sound of the ambulance’s siren if you are standing at the position of the car is 0.4 m
Moons gravity is about 1/6 as powerful as it is on Earth, so about 20 pounds.