Answer:
F = 4000 N
Explanation:
given,
mass of rocket (M)= 5000 Kg
10 Kg gas burns at speed (m)= 4000 m/s
time = 10 s
average force = ?
at the end the rocket is at rest
by conservation of momentum
M v + m v' = 0
5000 x v - 10 x 4000 = 0
5000 v = 40000
v = 8 m/s
speed of rocket = 8 m/s
now,
we know
change in momentum = F x Δ t
F = 4000 N
Hence, the average force applied to the rocket is equal to F = 4000 N
We know, the ideal gas equation,
P1V1 / T1 = P2V2 / T2
Here, P1 = 760 mm
V1 = 10 m3
T1 = 27 + 273 = 300 K
P2 = 400 mm Hg
T2 = -23 + 273 = 250 K
Substitute their values,
760*10 / 300 = 400 * V2 / 250
25.33 * 250 = 400 * V2
V2 = 6333.333/ 400
V2 = 15.83
In short, Your Answer would be approx. 15.83 m3
Hope this helps!
No
For example a rock was broken into one big and one little piece. The properties of these 2 pieces are still the same even though they have different shapes.
Answer:
Explanation:
a ) Slit separation d = .1 x 10⁻³ m
Screen distance D = 4 m
wave length of light λ = 650 x 10⁻⁹ m
Width of central fringe = λ D / d
=
= 26 mm
b ) Distance between 1 st and 2 nd bright fringe will be equal to width of dark fringe which will also be equal to 26 mm
c ) Angular separation between the central maximum and 1 st order maximum will be equal to angular width of fringe which is equal to
λ / d
=
= 6.5 x 10⁻³ radian.