An intersystem crossing (ISC) is a non-radiative process that involves the transition between two electronic states with different spin multiplicity. That is, when an electron is excited in a molecule in a basal singlet state (either by absorption or radiation) into a state of greater energy, an excited singlet or triplet state can be obtained.
Therefore, ISC is understood as an a non radio active transition between states with different spin multiplicity.
Correct answer is C: a radiative transition between states with the same spin.
The gravitational attraction between electron and proton is 10−40 whereas electrostatic force of attraction between a proton and an electron is 10-8.
<h3>What is the gravitational force between electron and proton in a hydrogen atom?</h3>
The gravitational attraction between electron and proton in a hydrogen atom is weaker than the coulomb attraction by a factor of about 10−40 while on the other hand, the electrostatic force of attraction between a proton and an electron in a hydrogen atom is 10- 8 which is 9 times.
The electric charge of the electron and proton are the same i.e. -1.60x10-19C whereas their gravitational force is different due to difference in mass.
So we can conclude that gravitational attraction between electron and proton is 10−40 whereas electrostatic force of attraction between a proton and an electron is 10-8.
Learn more about force here: brainly.com/question/12970081
#SPJ1
They correspond due to the fact that certain elements are grouped together based on the number of valence electrons on the outer shell of their electron configuration.
For instance, sulfur (S) has 6 electrons in the outer shell, as it is in the 6th group EXCLUDING transition metals (note, never take these into account, as their charge is always +2; a cation)
Answer:
103063860 Pa
Explanation:
= Density of seawater = 1030 kg/m³
g = Acceleration due to gravity = 9.81 m/s²
h = Depth at which pressure is being measured = 10.2 km
The gauge pressure is given by

Therefore, the gauge pressure at a depth of 10.2 km is 103063860 Pa
Answer:
0.64 J/g°C
Explanation:
Using the formula;
Q = m × c × ∆T
Where;
Q = amount of heat
m = mass (g)
c = specific heat capacity
∆T = change in temperature (°C)
In this case:
Q (water) = - Q (metal)
mc∆T (water) = - mc∆T (metal)
According to the information in this question,
For water; m = 100g, c = 4.18J/g°C, ∆T = (25°C - 20°C)
For metal; m = 50g, c =?, ∆T = (25°C - 90°C)
mc∆T (water) = - mc∆T (metal)
100 × 4.18 × (25°C - 20°C) = - {50 × c × (25°C - 90°C)}
100 × 4.18 × 5 = - {50 × c × -65}
2090 = -{-3250c}
2090 = 3250c
c = 2090/3250
c = 0.643
c = 0.64J/g°C