The average speed of the blocks are 0.36 m/s.
Explanation:
Average speed is defined as the ratio of distance covered per unit time. So if it is said that blocks are pulled to 0.9 m in the right side. This means the blocks cover a distance of 0.9 m from the origin and that distance is covered in 2.5 s. Thus, the average speed can be calculated from the change in speed with respect to time. As at time t = 0 , the speed is also zero, and at time t = 2.5 s , the speed will be
Since, in this case, the speed is equal to the average speed of blocks. So the average speed of the blocks will be 0.36 m/s.
Answer:
66.4 mL
Explanation:
A 75.7% (v/v) value, means that f<u>or every 100 mL of rubbing alcohol, there are 75.7 mL of isopropanol.</u>
With the above information in mind, we can s<u>olve the problem by multiplying 87.7 mL by 75.7 %</u>:
87.7 mL * 75.7 / 100 = 66.4 mL
So there are 66.4 mL of isopropanol in 88.7 mL of rubbing alcohol.
Answer:
The mole fraction of ethanol is 0.6. A 10 mL volumetric pipette must be used for to measure the 10 mL of ethanol. The vessel should be clean and purged.
Explanation:
For calculating mole fraction of ethanol, the amount of moles ethanol must be calculated. Using ethanol density (0.778 g/mL), 10 mL of ethanol equals to 7.89 g of ethanol and in turn 0.17 moles of ethanol. The same way for calculate the amount of water moles (ethanol density=0.997 g/mL). 2 mL of water correspond to 0.11. The total moles are: 0.17+0.11=0.28. Mole fraction alcohol is: 0.17/0.28=0.6