Answer:
[CH₃OH] to decrease and [CO] to increase.
Explanation:
- Since the energy appears as a product. So, the system is exothermic that releases heat.
- Increasing the temperature of the system will cause the system to be shifted to the left side to attain the equilibrium again.
<em>[CH₃OH] to decrease and [CO] to increase.</em>
<em></em>
Answer:
Blooms are alluring and show up in various hues and shapes to draw in pollinators who help in dust move. Most blooms have four primary parts: sepals, petals, stamens, and carpels. The stamens are the male part though the carpels are the female piece of the blossom.
Sepal: The outer parts of the flower (often green and leaf-like) that enclose a developing bud.
Petal: The parts of a flower that are often conspicuously colored.
Stamen: The pollen producing part of a flower, usually with a slender filament supporting the anther.
Anther: The part of the stamen where pollen is produced.
Pistil: The ovule producing part of a flower. The ovary often supports a long style, topped by a stigma. The mature ovary is a fruit, and the mature ovule is a seed.
Stigma: The part of the pistil where pollen germinates.
Ovary: The enlarged basal portion of the pistil where ovules are produced.
Receptacle: The part of a flower stalk where the parts of the flower are attached
Explanation:
forward reaction
a reaction in which reactent react to form product is known as forward reaction
reverse reaction
a reaction in which product react to form reactent is known as reverse reaction
At equilibrium stage
In a chemical equilibrium, the forward and reverse reactions occur at equal rates, and the concentrations of products and reactants remain constant. A catalyst speeds up the rate of a chemical reaction, but has no effect upon the equilibrium position for that reaction.
changing amount of reactent and product
lechatlier principle
" if you impose any change in concentration ( reactant or product) , temperature or pressure on chemical system, the system response in that way that opposes the change "