Answer:
The kinetic energy K of the moving charge is K = 2kQ²/3d = 2Q²/(4πε)3d = Q²/6πεd
Explanation:
The potential energy due to two charges q₁ and q₂ at a distance d from each other is given by U = kq₁q₂/r.
Now, for the two charges q₁ = q₂ = Q separated by a distance d, the initial potential energy is U₁ = kQ²/d. The initial kinetic energy of the system K₁ = 0 since there is no motion of the charges initially. When the moving charge is at a distance of r = 3d, the potential energy of the system is U₂ = kQ²/3d and the kinetic energy is K₂.
From the law of conservation of energy, U₁ + K₁ = U₂ + K₂
So, kQ²/d + 0 = kQ²/3d + K
K₂ = kQ²/d - kQ²/3d = 2kQ²/3d
So, the kinetic energy K₂ of the moving charge is K₂ = 2kQ²/3d = 2Q²/(4πε)3d = Q²/6πεd
the wavelength is 2.2m
wavelength can be calculated by formula wavelength = velocity / frequency so here first we need to find the velocity so velocity is distance travelled/time taken that 2 X 10^8 m/s now wavelength is = 2 X 10^8/ 90=2.2m.
Waves are signals that can go through various media, including wire in the case of an electrical AC current, water, light, and other media. The separation between two identical points on a sinusoidal wave is known as the wavelength. You can determine how long there is between each wave's peak and each wave's trough if you know the frequency of the wave moving through the medium.
To learn more about wavelength:
brainly.com/question/13533093
#SPJ4
Answer:
The sand absorbed more heat than the soil.
Explanation:
your welcome
Answer:
5 atoms of Boron
Explanation:
Boron makes up approximately 15.944% of the mass and the rest of the 84.056% is Fluorine. There is 5 Atoms because Boron atomic mass is 10.811 in 1 molecule of BF3 and you wanted 5 Molecules.
M = 150 kg.
Final velocity, v = 14 m/s
Initial Velocity, u = 6 m/s
Impulse = <span> m(v - u)</span>
= 150*(14 - 6)
= 150*8 = 1200 kgm/s or 1200 Ns<span> </span>