1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kaheart [24]
3 years ago
14

An object has a mass of 0.250 kg. What is the gravitational force of on the object by the earth?

Physics
1 answer:
sesenic [268]3 years ago
7 0

Answer:

2.4525 N

Explanation:

The earths gravity is 9.81 N/Kg

And so to work this out you would multiply 9.81 by 0.250 which equals to 2.4525N

You might be interested in
A 5.00 kg crate is on a 21.0° hill.
mojhsa [17]

Answer: 4575N

Explanation:

For y component, W = mgcosø

W = 500×9.8cos21

W = 4574.54N

Find the diagram in the attached file

8 0
3 years ago
The decimal equivalent for meter is
USPshnik [31]

m =dm ______ 10.000

Meters

The metre is a unit of length in the metric system, and is the base unit of length in the International System of Units (SI).

As the base unit of length in the SI and other m.k.s. systems (based around metres, kilograms and seconds) the metres is used to help derive other units of measurement such as the newton, for force.

8 0
2 years ago
How do i find acceleration due to gravitational force?
Alexxandr [17]

Answer:

a = 9.8 m/s²

Explanation:

Acceleration due to gravity on Earth is constant, which is 9.8 m/s²

6 0
2 years ago
I need answers and solvings to these questions​
den301095 [7]

1) The period of a simple pendulum depends on B) III. only (the length of the pendulum)

2) The angular acceleration is C) 15.7 rad/s^2

3) The frequency of the oscillation is C) 1.6 Hz

4) The period of vibration is B) 0.6 s

5) The diameter of the nozzle is A) 5.0 mm

6) The force that must be applied is B) 266.7 N

Explanation:

1)

The period of a simple pendulum is given by

T=2\pi \sqrt{\frac{L}{g}}

where

T is the period

L is the length of the pendulum

g is the acceleration of gravity

From the equation, we see that the period of the pendulum depends only on its length and on the acceleration of gravity, while there is no dependence on the mass of the pendulum or on the amplitude of oscillation. Therefore, the correct option is

B) III. only (the length of the pendulum)

2)

The angular acceleration of the rotating disc is given by the equation

\alpha = \frac{\omega_f - \omega_i}{t}

where

\omega_f is the final angular velocity

\omega_i is the initial angular velocity

t is the time elapsed

For the compact disc in this problem we have:

\omega_i = 0 (since it starts from rest)

\omega_f = 300 rpm \cdot \frac{2\pi rad/rev}{60 s/min}=31.4 rad/s is the final angular velocity

t = 2 s

Substituting, we find

\alpha = \frac{31.4-0}{2}=15.7 rad/s^2

3)

For a simple harmonic oscillator, the acceleration and the displacement of the system are related by the equation

a=-\omega^2 x

where

a is the acceleration

x is the displacement

\omega is the angular frequency of the system

For the oscillator in this problem, we have the following relationship

a=-100 x

which implies that

\omega^2 = 100

And so

\omega = \sqrt{100}=10 rad/s

Also, the angular frequency is related to the frequency f by

f=\frac{\omega}{2\pi}

Therefore, the frequency of this simple harmonic oscillator is

f=\frac{10}{2\pi}=1.6 Hz

4)

When the mass is hanging on the sping, the weight of the mass is equal to the restoring force on the spring, so we can write

mg=kx

where

m is the mass

g=9.8 m/s^2 is the acceleration of gravity

k is the spring constant

x = 8.0 cm = 0.08 m is the stretching of the spring

We can re-arrange the equation as

\frac{k}{m}=\frac{g}{x}=\frac{9.8}{0.08}=122.5

The angular frequency of the spring is given by

\omega=\sqrt{\frac{k}{m}}=\sqrt{122.5}=11.1 Hz

And therefore, its period is

T=\frac{2\pi}{\omega}=\frac{2\pi}{11.1}=0.6 s

5)

According to the equation of continuity, the volume flow rate must remain constant, so we can write

A_1 v_1 = A_2 v_2

where

A_1 = \pi r_1^2 is the cross-sectional area of the hose, with r_1 = 5 mm being the radius of the hose

v_1 = 4 m/s is the speed of the petrol in the hose

A_2 = \pi r_2^2 is the cross-sectional area of the nozzle, with r_2 being the radius of the nozzle

v_2 = 16 m/s is the speed in the nozzle

Solving for r_2, we find the radius of the nozzle:

\pi r_1^2 v_1 = \pi r_2^2 v_2\\r_2 = r_1 \sqrt{\frac{v_1}{v_2}}=(5)\sqrt{\frac{4}{16}}=2.5 mm

So, the diameter of the nozzle will be

d_2 = 2r_2 = 2(2.5)=5.0 mm

6)

According to the Pascal principle, the pressure on the two pistons is the same, so we can write

\frac{F_1}{A_1}=\frac{F_2}{A_2}

where

F_1 is the force that must be applied to the small piston

A_1 = \pi r_1^2 is the area of the first piston, with r_1= 2 cm being its radius

F_2 = mg = (1500 kg)(9.8 m/s^2)=14700 N is the force applied on the bigger piston (the weight of the car)

A_2 = \pi r_2^2 is the area of the bigger piston, with r_2= 15 cm being its radius

Solving for F_1, we find

F_1 = \frac{F_2A_1}{A_2}=\frac{F_2 \pi r_1^2}{\pi r_2^2}=\frac{(14700)(2)^2}{(15)^2}=261 N

So, the closest answer is B) 266.7 N.

Learn more about pressure:

brainly.com/question/4868239

brainly.com/question/2438000

#LearnwithBrainly

5 0
3 years ago
A car speedometer has a 6% uncertainty. What is the range of possible speeds when it reads 100 km/h?
MAVERICK [17]

<span>Range = 88.5 Km/h - 94.5 Km/h</span><span>
</span>

3 0
2 years ago
Other questions:
  • A helicopter (m = 3250 kg) is cruising at a speed of 56.9 m/s atan altitude of 185 m. What is the total mechanical energy of the
    10·1 answer
  • The term meniscus refers to
    8·1 answer
  • _______ are atoms that carry an electric charge.
    9·2 answers
  • A device that measures potential is a(n) circuit.
    10·1 answer
  • The total distance from a house to a school to is 9.5 km. A student travels all the way from his house to the school and back to
    10·1 answer
  • A car starts from rest at a stop sign. It accelerates at 4.6 m/s^2 for 6.2 s , coasts for 2.1s , and then slows down at a rate o
    13·1 answer
  • Obtain the zeroes of polynomial
    8·1 answer
  • Which type of circuit has only one path for the electrons to flow?
    15·2 answers
  • What is the resistance of a bulb of 40w connected in a line of 70v​
    13·1 answer
  • (02.06)plz help me 20 points ​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!