Answer:
The answer is below
Explanation:
Momentum is used to measure the quantity of motion in an object. Momentum is the product of mass and velocity.
Momentum = mass * velocity
The principle of conservation of momentum states that momentum cannot be created or destroyed but can be transferred. Therefore the momentum before and after an action is equal.
Initial momentum = Final momentum
Let m be the mass of the diver, M be the mass of the raft, u be the initial velocity of the diver, U be the initial velocity of the raft, v be the final velocity of the diver and V be the final velocity of the raft.
m = 71 kg, M = 500 kg, v = 6 m/s
Initial both the raft and diver are at rest, hence u and U is zero, hence:
mu + MU = mv + MV
71(0) + 500(0) = 71(6) + 500(V)
0 = 426 + 500(V)
500(V) = -426
V = -426/500
V = -0.852 m/s
Answer:
h = 23.716 m
Explanation:
Given that,
The time taken by the stone to hit the water is, t = 2.2 s
Height of the bridge above the ground, h = ?
The distance that the body will fall through the time is given by the formula
S = 1/2 gt² m
Where,
g - acceleration due to gravity
Substituting the values in the above equation
S = 1/2 x 9.8 m/s² x (2.2 s)²
= 23.716 m
Therefore, the height of the bridge from the surface of the water is h = 23.716 m
Answer:
0.17547 m
Explanation:
m = Mass of block = 
v = Velocity of block = 10.8 m/s
k = Spring constant = 125 N/m
A = Amplitude
The kinetic energy of the system is conserved

The amplitude of the resulting simple harmonic motion is 0.17547 m
After rolling off the edge of the cliff and falling ' M ' meters down,
the speed of the boulder is
Square root of ( 19.6 M ) .
If M=111 meters, then the speed is <em>46.64 meters per second</em>.
We have known for roughly 500 years that if there's no air resistance,
the mass of the falling object makes no difference, and all objects fall
with the same acceleration, speed, time to splat, etc.