Answer:
The average acceleration of the bearings is 
Explanation:
Given that,
Height = 1.94 m
Bounced height = 1.48 m
Time interval 
Velocity of the ball bearing just before hitting the steel plate
We need to calculate the velocity
Using conservation of energy

Put the value into the formula



Negative as it is directed downwards
After bounce back,
We need to calculate the velocity
Using conservation of energy

Put the value into the formula



We need to calculate the average acceleration of the bearings while they are in contact with the plate
Using formula of acceleration

Put the value into the formula



Hence,The average acceleration of the bearings is 
Answer:
According to Oxford Dictionaries "Precision" means "the quality, condition, or fact of being exact and accurate."
Explanation:
Hope this helps! :)
Answer:
W=315 x 10⁵ J
Explanation:
Given that
F= 2.5 x 10⁵ N
d= 90 m
K.E.=5.4 x 10⁷ J
We know that work done by all force is equal to the change in kinetic energy
Lets take work done by catapult is W
W + F.d= K.E.
W= 5.4 x 10⁷ - 2.5 x 10⁵ x 90 J
W= (540 - 25 x 9) 10⁵ J
W=315 x 10⁵ J
(B) 2.25cm
<u>Explanation:</u>
Given:
At 40 hours, the height of the bamboo plant is 2.1cm
At 50 hours, the height of the bamboo plant is 2.4cm
Height of the bamboo plant after 45 hours = ?
The difference in length from 40 to 50 hours = 2.4 - 2.1cm
= 0.3 cm
Mean of 40 and 50 is 45.
Thus,
At 45 hours, the height will increase by 0.3/2
= 0.15 cm
Height at 45 hour = 2.1 + 0.15cm
= 2.25cm
Therefore, the height of the plant after 45 hours is 2.25cm
Imagine you are in a swimming pool 30m deep. Assuming you know that water is denser than air, you would know that the 30m of water above you will carry more weight, and press down on your body. Say you were in a swimming pool 60m deep, you would be sandwiched between 30m of water pressing down on you, and the upthrust created by the 30m of water below you.
In a building 30m up, the pressure will be regulated, as you are in a building. The floor will be strong enough to support the weight of the body, and the body will not recoil into itself.