MgCl2 is magnesium chloride.
Hope this helps!
Answer:
When we heat a solid, the energy supplied is used to increase the kinetic energy of its molecules, and thereby its temperature increases. ... From solid to liquid at melting point or from liquid to gas at boiling point) is termed as its latent heat.
Process:
A cooling curve is a line graph that represents the change of phase of matter, typically from a gas to a solid or a liquid to a solid. This is because the matter has more internal energy as a liquid or gas than in the state that it is cooling to.
The initial point of the graph is the starting temperature of the matter, here noted as the "pouring temperature". When the phase change occurs there is a "thermal arrest", that is the temperature stays constant. This is because the matter has more internal energy as a liquid or gas than in the state that it is cooling to. The amount of energy required for a phase change is known as latent heat. The "cooling rate" is the slope of the cooling curve at any point.
Weight = Mass * gravity
= 1470* 9.8 = 14406 N ≈ 14,400 N
Answer: Choice B
There are triple bonds between the carbon (C) and oxygen (O) atoms. Then there are 2 dots on either side
==========================================================
Explanation:
When it comes to interaction and chemistry, all that matters is the valence shell or valence electrons. This is the outermost shell. This is because various elements do not interact with the inner electrons (they're locked in place so to speak and don't move to other elements).
Carbon has 6 protons, which is what uniquely makes up this element. This means there are 6 electrons. The inner shell has 2 electrons and the valence shell has 4 electrons. Two electrons are shown as the two blue dots on the left side of the C. The other two electrons form two of the lines, or the bonds, between the C and O.
-------------
Oxygen has 8 protons and 8 electrons. It has 2 electrons in the inner shell and 6 electrons in the valence shell. Two of those electrons are the red dots on the right side of the O. The other 4 electrons are shared to form the bonds with the carbon atom.
This is where things get a bit tricky. I've shown a diagram below indicating that one of the oxygen electrons (red dot) is passed to the carbon, as this carbon atom is pulling on the oxygen electron. But the oxygen atom is pulling on it as well, which forms one of the triple bonds.
So this is why diagram B is the final answer. This is something you can logically determine (remembering the rules of how each electron shell is formed), or it's something you'll need to memorize. In the real world, it's easy to forget a lot of info like this, so that's why having it handy as a lookup reference is preferable.
Work = Force* Distance
2000*1000=2000000
Power = Work/Time
2000000/45=<span>44444.44 Watts</span>