Answer:
Group of highly-reactive chemical elements. The alkali metals are a group (column) in the periodic table consisting of the chemical elements lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), and francium (Fr).
Answer:
Gram atomic mass of an element can be defined as the mass of one mole of atoms of a particular element. It is numerically equivalent to the value of the element's atomic mass unit but has its unit in grams.
Aromatic compounds are compounds that contain carbon-carbon multiple bonds.
The question did not mention that a heteroatom is present in the compound so we can assume that there is none of such. In that case, the compound contains only hydrogen and carbon.
So,
(CH)n = 78
where n is the number of each atom present.
(12 +1)n = 78
n = 78/13
n = 6
The molecular formula of the compound is C6H6
When C6H6 is treated with .conc.HNO3/conc.H2SO4 the compound shown in image 1 is formed. The reaction occurs at the C-C multiple bond.
When C6H6 is reacted with chlorine in the presence of sunlight, hexachlorobenzene (shown in image 2 attached) is formed.
brainly.com/question/24305135
Answer:
16.5 dm³
Explanation:
Data Given:
no. moles of O₂ = 0.735 moles
volume of O₂ = ?
Solution:
Now
we have to find volume of O₂ gas
Formula used for this purpose
No. of moles = Volume / molar volume
where
molar volume at STP for Oxygen (O₂) = 22.4 dm³/mol
No. of moles O₂ = Volume of O₂ / 22.4 dm³/mol . . . . . .(1)
Put values in equation 1
0.735 = Volume of O₂ / 22.4 dm³/ mol
rearrange above equation
Volume of O₂ = 0.735 x 22.4 dm³/ mol
Volume of O₂ = 16.5 dm³
So,
the volume of O₂ at STP is 16.5 dm³
Answer: Option (B) is the correct answer.
Explanation:
Surface tension is defined as the attractive forces experienced by the surface molecules of a liquid by the molecules present beneath the surface layer of the liquid.
And, viscosity is defined as the ability of a liquid to resist its flow. When a substance has high viscosity then it is known as a viscous substance.
Since, it is given that viscosity of liquid B is more than liquid A. Therefore, liquid B has more resistive force on its surface as compared to liquid A. As a result, time taken by liquid B is more than time taken by liquid A.
Also, Surface tension = 
Surface tension of liquid B is more than liquid A. Therefore,
.
Thus, we can conclude that tA will be less than tB.