Hi there!
Since the crate is being slid at a constant speed, the forces sum to 0 N. In this instance, the following forces occur in the axis of interest:
Wsinθ = downward acceleration along incline due to gravity (N)
Fκ = kinetic friction force along incline (N)
A = applied force (N)
The acceleration due to gravity and friction force act in the same direction, so:
Wsinθ + Fκ = A
Solve for sinθ using right triangle trigonometry:
sinθ = O/H = 3/6 = 0.5
Rearrange the equation for the force of kinetic friction and solve:
Fκ = A - 0.5W
Fκ = 30.4 - 20 = 10.4 N
Now, recall that:
Work = Force × displacement (W = F × d)
Since the box's displacement is in the same axis as the force but OPPOSITE direction, we must use:
W = Fdcosθ
Angle between displacement and friction force is 180°.
cos(180) = -1
Work done by friction = -Fd = -10.4(6) = -62.4 J
Answer:
O'B. Good conductor of heat.
Explanation:
Plastic is not a good conductor of heat because it has no delocalized electrons it's surface to transfer heart.
Answer:
25.3J
Explanation:
Given parameters:
Mass of aluminum = 3.05g
Initial temperature = 10.8 °C
Final temperature = 20 °C
Specific heat = 0.9J/g °C
Unknown:
Amount of heat needed for the temperature to change = ?
Solution:
To solve this problem, we use the expression:
H = m C Ф
H is the amount of heat
m is the mass
C is the specific heat capacity
Ф is the change in temperature
H = 3.05 x 0.901 x (20 - 10.8) = 25.3J
<u>A</u><u>n</u><u>s</u><u>w</u><u>e</u><u>r</u><u> </u><u>:</u><u> </u>
<em><u>.</u></em><em><u>changing chemical energy to thermal energy</u></em>
<em><u>.</u></em><em><u>changing nuclear energy to radiant energy</u></em>
<u>E</u><u>x</u><u>p</u><u>l</u><u>a</u><u>n</u><u>a</u><u>t</u><u>i</u><u>o</u><u>n</u><u> </u><u>:</u><u> </u>
<h3><em><u>H</u></em><em><u>o</u></em><em><u>p</u></em><em><u>e</u></em><em><u> </u></em><em><u>i</u></em><em><u>t</u></em><em><u> </u></em><em><u>h</u></em><em><u>e</u></em><em><u>l</u></em><em><u>p</u></em><em><u>s</u></em><em><u> </u></em><em><u>y</u></em><em><u>o</u></em><em><u>u</u></em><em><u> </u></em><em><u>m</u></em><em><u>a</u></em><em><u>t</u></em><em><u>e</u></em><em><u> </u></em><em><u>)</u></em><em><u>)</u></em></h3>